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ABSTRACT

Several addition theorems involving the generalized
Legendre functions of the first and second kind -- ng(z)
and Qﬂv(z) -— are (1) stated with convergence conditions;
(2) interpreted in terms of the UIR's of SU(1,1) ~ S0(2,1) in
the discrete, continuoug, and mixed bases; (3)‘proved both
directly and indirectly by continuation from the SU(2) addition
theorem. The relevant group theory is supplied in a set of appen-
dices, along with detailed properties of the generalized Legendre
functions. The problem of diagonalizing SU(1,1) convolution
equations in the discrete and continuous bases is briefly considered;
it is shown how the diagonalization of Abarbanel and Saunders arises
as a special case of a more general result. Pertinent SU(1,1)

expansion theorems are derived.
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I. Introduction

It is the aim of this paper to state, interpret, derive, and
briefly apply the addition theorems associated with the "generalized
Legendre functions" introduced by Azimov,

These functions have appeared in the physics literature of
partial wave analysis over the past 15 years in many guises, and
their role as "harmonics" of SU(1,1) n S0(2,1) is well understood,
though not much has been said about the group theoretic status of
the second-kind functions. The reason seems to be that, although
the discrete-basis treatment of SU(1l,1) was rather thoroughly handled
by Bargmann2 in 1947, the continuous-basis analysis was not effective-
ly begun until l%’?,3 and it is with fhis continuous basis that the
second-kind functions are associated.

In a non-group-theoretic context, the generalized Legendre
functions of the first and second kind were defined and character-
ized by Azimov in 1966, two years after the work of Andrews and

4

Gunson™ of which Azimov was apparently unaware. Azimov's equations,
allowing for arbitrary complex values of the helicity labels u
and Vv, are more general than those of AG. Since it is through

analytic continuation in these labels that the discrete and con-

tinuous bases of SU(@,1) are related, and since Azimov has provided
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such a complete set of formulas, we have adopted Azimov's notation
for most of this paper: Pﬂv (z) and in (z).5

Most physicists are familiar with the first-kind addition
theorem as it relates to the rotation group, e.g., spherical har-
monics in electrostatics. The other addition theorems involving
both first- and second-kind functions, or only second-kind functions,
are much less well-known. What we have called the hybrid addition
theorem was derived by G-unson16 and later lectured upon by Hermann}ﬁ_

but the second-kind addition theorem seems to make an exclusive

appearance in Azimov's paper. This formula reads [see (2.7)]

joo
TP e o L [ w8 ().
-

(1.1)

Closely related to the notion of an addition theorem is a
technique for simplifying an integral equation, known as diagonali-
zation, in which some or all of the integrations are replaced with
the sum appearing in an addition theorem, Often, the projected
functions which appear in the diagonalizedequation have some special
significance which causes the diagonalized equationto be simpler
and more comprehensible than the original equation. We can marvel
at the simplicity of the elastic unitarity relation for spinless-

particle scattering amplitudes expressed in partial waves,

- Lin 2
Im T, = EITJ.I , (1.2)
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the standard example of a useful SU(2) diagonalization in parti-
cle physics. In Section VI of this paper we show, as an applica-
tion of the addition theorems, how one might diagonalize certain
SU(1,1) convolution equations in a similar manner.

The desire to clarify these diagonalizations has been our
primary source of motivation for investigating the addition theorems
in the first place. We have been interested in diagonalizing the
various integral equations which arise in connection with the multi-
peripheral model for elementary-particle scattering amplitudes.

The multiperipheral "bootstrap" idea is not new56 but has been
recently infused with new life in the framework of the topological
expansion of the S—matrix.7 In particular, we hope that the second-
kind diagonalization discussed in Section VI.2 can shed some light
on the meaning of such topological entities as the twisted and
untwisted reggeon propagators, or loops, which appear as kernels in
the cylinder and planar bootstrap eQuations.8

thh of the material in this paper is standard SU(1,1) lore;
we suggest that the value of the paper, if any, lies more in the
interconnection of known facts tha% in the facts themselves. Never-
theless, to be reasonably self-contained, we have reproduced much
of this SU(1,1) 1lore in the Appendices, where several topics
are treated in somewhat non-standard fashion. Much use is made,
for example, of the SU(1,1) Lie generators realized as regular-
representation shift operators, and of the resultant Casimiric
differential equations (Appendices C, D, F).

In Appendix D we give a quasi-derivation of the SU(1,1) ma-

trix elements based on the Casimiric differential equations, but
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ultimately we rely on calculations in the literature. We suspect

that the fact that the continuous-basis matrix .

J
HU
not been widely appreciated. In this vein we have slightly general-

elements are simply second-kind Legendre functions qur& e’ 1 has
ized the comments of Hermann15 concerning the interpretation of the
integral representations of the Legendre functions (Section V.5).

In Appendix G we derive from scratch the Peter-Weyl expan-
sion theorem for SU(1,1), since this result is often quoted without
proof in the literature. Our method of derivation, we feel, makes
particularly clear the disposition of the 'modified"expansion theorem
for non-square-integrable functions, which is actually much simpler
than the unmodified expansion theorem.

The complication inherent in the Peter-Weyl theorem in the
discrete basis is exacerbated in the continuous basis by the ap-
pearance of the principal-series multiplicity index. Rather than
interpret this extra index, we think we have made it go away in
our So+ semigroup expansion theorem (G.17), designed for use in
conjunction with the second-kind addition theorem (Section VI.2).
The projection part of this specialized expansion theorem, (G.17b),
is reminiscent of the Froissart-Gribov projection of Regge theory,
a fact we think will have a bearing on the definition of planar
reggeon loops, as noted earlier.

Finally we comment on the derivations of the addition theo-
rems. In Section III these theorems are in a sense derived, for
special J values, because it is shown how the addition theorems
reflect the Hilbert space completeness relations for the SU(1,1)

UIR's in various bases. Somehow, we feel that this type of proof
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lacks the punch of a direct non-group-theoretic derivation, a
situation we have tried to remedy in Section IV, where we show
how all the addition theorems follow from contortions of the
SU(2) addition theorem which everybody believes. Unfortunately,
these contortions may be found so discomforting that the reader is
still not sure whether the addition theorems have in fact been
proved. For this fastidious reader we provide Section V which
contains our "best" and most interesting proof of the addition
theorems. A byproduct of this proof is an understanding of the
integration domain in the Legendre-function integral representa-
tions (Egs. (5.16) and (5.17)).

The contents of this paper have been mostly described
already. In Section II we state the addition theorems and related
formulas with a minimum of comment. This section is independent
of the rest of the paper, except that the Legendre functions ap-
pearing in the formulas are defined in Appendix H. This lengthy
appendix contains the properties of the Legendre functions to which

we constantly refer.

Throughout the paper we use the following terminology:

(1) representation: an explicit form of a Lie group.

(2) UIR: unitary irreducible representation.

(3) realization: an explicit form of a Lie algebra.

(4) differential generator: a realization of a Lie
generator as a differential operator. We distinguish differential
generators Ei from the generator matrices or abstract generators

Gi by an over-arrow. (For 3-vectorswe use the undertwiddle, gc)
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(5) half-integer: m = "half-integer" if 2m = odd integer.

(6) integrality: that which distinguishes integers from
half-integers ( € = O or %0.

(7) Legendre function, Legendre equation: what Azimov calls
a generalized Legendre function, and the generalized Legendre equation

(see App. H).



-12-

II. Summary of the Addition and Multiplication Formulas

In this section we simply state the various addition theorems,
their corresponding multiplication formulas, and certain special cases
of both. The formulas are derived and interpreted in later sections
of this paper. Nevertheless, in Section 7 we have tried to give at
least one reference for each of the major formulas. Often, the con-
ditions of validity stated in the literature are less general than
those given here.

The variables zq, Zys 2 which appear in the following equa-
tions are always taken to lie on the principal sheet of the Legendre
functions in which they appear. The cuts of the Legendre functions

are shown in Figure 6. These cuts and the definition of the square

roots /22 -1=vz+1+ /2 -1 are discussed in Appendix H.5.
More general versions of formulas (2.1), (2.5), and (2.14),
with complex helicity labels, are given by Azimov.1

1. First-Kind Addition Theorem:

[ee]

[ ]
_imq) - -im¢ - Z -inw J J
e Pmml(z)e e aml(zl)an'(z2L
n:...OO

(2.1)
In this formula, Zy,Z5, W are independent complex variables in

terms of which 2z, ¢, ¢' are given by

_ 2 1. /4h2_1
Z Z,%, * /gl 1 /;2 1 cos w (2.2)



-13-

Z sz-—l+ Z Vzg—lcosw—i\/z2- 1 sin w

S0 R 1"%2 2

21
(2.3)

with 10 given by (2.3) with z,¢> 2, . The label j is an
arbitrary complex number, but the labels m, m' are either both
integers (in which case the summation index n runs over the integers)
or both half-integers (n runs over the half integers). In other
words, m, m', n must have the same integrality.

The sum in (2.1) converges if Zq s Zy 5 w respect the follow-

ing condition:

. > exp ( 2|Im(w)|) . (2.4)

If w is real, (2.4) is satisfied by Re(zl) > 0, Re(zg) >0 (but
see Section IV.1 below). If w is real and z; = COS 6, with

|61 < m, then (2.4) |6 ]+|6,| < m .

2. Hybrid Addition Theorem:

-im¢

e Qimt (z) e_im¢

t
g
D
1
S-
e
g.ﬁu;
—~
[
Nt
gﬁL

(z,)

o . (2.5)
= ﬁi e_lnu)Qin (zz) Pim' (zl) .

n=-0

A1l the comments of Section 1 apply to (2.5) except those regarding
convergence.
The convergence condition for (2.5) is

Kej
Zq + 1 2

zl -1

22 -1

22 + 1

> exp(2|Im(w)]| ), (2.6)
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5 Z,, Z,, w are real, (2.6)

is satisfied by 2, > 7y > 1.

where o, = * as Re(zz) > 0. If

3. Second-Kind Addition Theorem:

1t

e HE zﬂul (z) e_ﬁg' s e e A QJ (z ) Q ' (z

im
(2.7)

In this formula (also valid with unslashed Q functions) Zys %y O

!
are independent complex variables in terms of which =z, £, & are

given by

: . — .
. > [2
Z = 2%, * Vél -1 -Néz -1 ch(a) (2.8)

[V —1+z/z —1cho¢-¢z2—1.sh_0t}/ zz-l,

2

(2.9)

1
-& given by (2.9) with zl<%>zz. The labels j, U, u'

are arbitrary complex numbers and the contour C is any contour

with e

running from -iew to +io which separates the pole chains of the
function I'(j +1 + A)T(j +1 - )\), see Fig. 3. If Re(j) > -1, C
may be taken along the imaginary axis with no deformations.

The integration in (2.7) converges if =z 57 O satisfy

17 ?
the condition

z, + 1
z1 -1

For 2,2, > 1, (2.10) requires only that |Im(a)| < m. For o

1

+ =
2

+ |Im(a)| < w. (2.10)

W
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real, (2.10) is satisfied for all complex =z unless both these

1’ Z2:
variables lie in the range (-1,1).

4. Alternative Second-Kind Addition Theorem:

“ME 4 r oy MR L, I(Jtlm ﬁi = gme
eUE " (Z)eug ——2%%3’1?3% (_l)m.]em

m=j+1

) (2)
P(m-j )T( j+1+m)

(2.11)

1
The variables =z, &, & are given in terms of Zq s Zys0 exactly

1
as in (2.8) and (2.9) above, and J, M, 4 are -agadn arbitrary
complex numbers.

The convergence condition for (2.11) is

o o
Zq - 1 1 Z, - 1 2
. > exp(-2 Re(a)), (2.12)
zl + 1 Z, + 1
where o, =% as Re(zl) 2 0 and o, =% as Re(zz) 2 0.
If z, and z, are imaginary, condition (2.12) is simply
Re(a) > 0.

The alternative second-kind addition theorem is the anal-
ytic continuation of (2.7) obtained by closing the contour to the
right, picking up the residues of T(j+l-A), and dropping the

great circle.

5. Multiplication Formulas

The addition theorems (2.1), (2.5), and (2.7) are the

fourier transforms of the following multiplication formulas:
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P t ot
Pl (2) Bl (2) = & fdw GHm I p) (5 Yy,
- (2.13)
i 3 T . .. . . ot
Pin (zl) ngx (22) = 3%? cjk dw e+1nw £e—1m¢ Qim"(z) o~im o },
-
(2.14)
j J 1 A - i et
Qi)\ (Zl)Qiuv (ZZ) = 5 f do, e+ Qe HE Jp' (Z)eua 1.
(2.15)

These formulas are correct as stated provided that Zqys %o satisfy
(2.4), (2.6), and (2.10), respectively, with w and o real. For
in violation of one of these conditions, the corresponding

Z Z

1’ 72
multiplication formula is still correct provided the integration
contour is deformed around the branch point and attached cut

which penetrates the nominal integration region. This branch

point is the reflection via (2.2) or (2.8) of the =z =1 singularity

of the Legendre functions into the plane of the integration variable

w or dao.

6. Special Cases

. . J J
When one of the helicity labels of 'Puv (z) or qu (z)

vanishes, the resulting function 1is a regular associated Legendre

function,
Pl (2) = P (a) Pl o(2) = P (3)
Q (2) = @ (a) R () = G
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We therefore obtain the following special cases of the addition

theorems, with conditions as stated earlier:

- - -inw ,-n
P(2) z e ER (5)) P (2,) (2.16)
_ -inw .-n n
o(z) = ) PR (7)) 6] (z,) (2.17)
n:_OO
{0 |
_ 1 -0A -\ A
o) = g [ ot e (o) (2.18)
-1 Qm P
[ . N (Z ) s (Z )
D.(z) = -2 ‘Z (-1) ™d g 7J 177 27
! Tl T(m-j) T(J+1+m) (2.19)
As special cases of the multiplication formulas we have
™
-n n _ 1 .
P (z) Py (2y) = 5% do eI Py(2) (2.20)
-
1T .
Pgn(zl)Q?(zz) - zlﬂ dw e™™ 2,(2) (2.21)
-
N
QJ. (z-l)QJ. (22) = %fda em Qj(z) (2.22)
and specializing further,
™
P, (2) Py (2,) = L f dw P(2) (2:23)
(o]
m
Pj(zl)Qj(zz) = %fdeJ. (z) (2.24)

(o]
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Qj(zl)Qj(zz) =fo do QJ.(Z) (2.25)

with 2z still given by (2.2) or (2.8).

Using the following Jacobians (valid for =z z all

2J

real)

i

m
dw f dw 8(z - 2,7, - 1/212— 1 \/222- 1 cos w) 6(-k)

ey

o

m v \ 8(z - z,)
S - j da 6(z—z122— ¢z12-1/222_1 cha) = ____+_,
3Z o ‘/+k
where

- _ 2 2 2
k = k(Zl,ZZ,Z) = Zl +22 +72 - 221Z2Z -1
= (z-z,) (z-2_)

and

N
I+
i

Z1%5 + '/Zl -1 1/222 -1,

equations (2.23) through (2.25) may be re-expressed as

(o]

Pj(zl)Pj(zz) = %j dz Pj(z)e(-k)//-'k" (2.26)
Pi(ay) Q(z,) = %j 4z Qy(3) O(~k)HE (2.27)

=00
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oo

0y(2) 8(5,) = % f 4z Q,(2) 6(z-2,)//7E . (2.28)
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ITI. Group-Theoretic Interpretation of the Addition Theorems:

In general, an addition theorem is a consequence of the com-
pleteness of the set of vectors which spans the Hilbert space of a
unitary irreducible group representation.

For example, the Hilbert space 1 of the UIR Dj(g) of SU(2)
is spanned by the complete set {|j,m>}, where 2j = 0,1,2... and
m=j,j-1...-jJ. The completeness relation is therefore

J
1= ) o<l (3.1)
m=-]
where lj is the identity operator in Hj. Since the operators Dj(g)
which represent the elements of SU(2) in Hj have, by definition,

the group property
Dl(g) = D'(g)) D(g,), (3.2)

where g = 8,8, it follows from (3.1) that
' J
. . . .
<jnp?(g)|jm > = Z <jn|D’(g; )| jn><jn|DY(g,)|dm > . (3.3)
=-J

!
In our parametrization of SU(2) we have g = (¢, 6, ¢ ) and

t 1

<jm|DJ(g)|jm?> = o~imd dém' (cos 0) g~im ¢ ,

so that (3.3) becomes
. 3 ) ' ' J L) . 3
o1 dém' (z) ™™ ¢ . EE? e~ dén (Zl) dim' (22) ’
n=-j (3.4)
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where Z; = cos ei, and expressions for ¢, 2z, ¢', w are given in
Appendix E.1. When (3.4) is converted to P functions via (H.13),
we get a special case of the first-kind addition theorem (2.1).

In this section, we shall "interpret" the various addition
theorems in terms of the UIR's of SU(1,1). We refer the reader at
this point to Appendices A through E, whose contents are listed in

the general Table of Contents at the beginning of this paper.

1. Unitarity of Matrix Elements

Unlike the d-functions, the Pim; are not actually unitary
when thought of as matrix elements with indices m and m'. This fact,
however, is not significant for the addition theorems (and their
subsequent use in diagonalizing conwvolution equations) because the
addition formulas are invariant under changes of the normalizing
factor. By this we mean that if the unitary matrix elements Djmm! (g)

satisfy the addition theorem

ol (€)= Y Dl (e) DL (ey),
n
then so do
W@ = [ad] ol

where Ni is an arbitrary function of m and Jj. According to
(H.12) and (H.13), the functions P and d differ by just such a
factor,

Pl (z) = [l e,

where NJ = /G (i)', Im(z) 3 o.
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2. First-Kind Addition Theorem

We have already shown how the first-kind addition theorem (2.1)
may be understood in terms of the SU(2) UIR's when 2j = 0,1,2... and
Iml,hnw < j. Alternatively, (2.1) may be construed as the group
property of the SU(1,1) UIR matrix elements, taken in the discrete
basis discussed in Appendix B. As j +takes the special sets of
values shown in Table B.1l, the summation in the completeness relation
(B.6) runs over the values shown in the right column of the Table.

For each class of UIR we thereby obtain a special case of the general
first-kind addition theorem. The fact‘that the summation is semi-
infinite for the Dki (and finite for SU(2)) is a consequence of
the zeros of the P functions (see Appendix H.15 and Fig.8 (g)).

The first-kind addition theorem for arbitrary complex j may
be regarded as the analytic continuation of the qu and Cq% group
properties away from Re(j) = -3 . In Section IV we will show that
(2.1) is in fact the unique analytic continuation of the SU(2) ad-

dition theorem.

3. Second-Kind Addition Theorem

Given the completeness relation (B.12) for the Hilbert space
associated with the Dk+ UIRYs in the continuous basis, and given the
explicit continuous-basis Dg. matrix elements (D.8), we see at once
that, when 2j= -1,0,1,..., the second-kind addition theorem (2.7)
is the E%T group property in the continuous basis. The general
result (2.7) is the unique analytic continuation of this group pro-

. 1
perty in J away from the integers, and in u, U away from the

imaginary axes.
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4. Alternative Second-Kind Addition Theorem

17 2, are

purely imaginary -- an interpretation similar to that discussed above.

Equation (2.11) has -- when 2j = integer and =z

Using the discrete-basis completeness relation (B.6), but the mixed-

basis D#F matrix elements described in Appendix B.4 and given

explicitly in (D.9), it is easy to show that the continuous-basis

matrix elements of U(g) = U(gl) U(gz) are

o0 ; . j -
e—ug @g t (ch v) e_u'E' = 2 2: ein e-imw gy;—m(lshnl)gmu (lshnz{
’ T(m-j) T(m+j+1)

(3.5)

= -ish nl, Z

m=j+1

Equation (3.5) is a special case of (2.11) with z)

= ish Ny, and z = ch v. Alternatively, (2.11) is the analytic

2

continuation of the mixed-basis addition theorem (3.5).

5. Hybrid Addition Theorem

For this theorem we give a different kind of group-theoretic

15

interpretation taken from Hermann To conform with the notation

of Hermann, and Gunsonlé, we write (2.5) as

(o]

Ble) = ) D) El (e, (3.6)

n=-00

where
1] ]
Dim'(g) = e_lm(bd;mn(z) et °
. . . . 1,
E;;m'(g) = i e;;m'(Z) g7im ¢
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Hermann's point of view is that, once one knows that (3.6)
is true, one can write the E functions as matrix elements of an oper-
ator Ej(gc) which is related to the operator Dj(g) of SU(2) by
a certain Cauchy kernel transform. If we let G = SU(2) and

and G, = SI(2,C), then EJ(ge) is defined by

. -1 .
B(g,) = fdg c(g™g,) D)(g)- (3.7)
G
Here, g, € G, - G, which includes SU(1,1), 2j = 0,1,2..., and
DJ, ) are operators in the Hilbert space HY associated with the
SU(2) UIR 1labelled by Jj. These operators possess the group multi-

plication property,

f dg o g'l[gogc}) D(g)
G

J
E(g.g,)

f ag o (g% 7 e D)
G

j dg o(g™'g,) (g g)
G

1}

fdg o(e™g,) D(g,) p(g)
G

pl(g,) ¥(g,), (3.8)

where we have used the invariance of dg and the group property of
the D‘], Taking matrix elements of (3.8) in HJ, we generate the

hybrid addition theorem (3.6), which may then be continued to complex j.
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From the completeness property of the SU(2) UIR's given in |

(G.19),

1) (2341) trace [DU(erh) p(e,)] = ele; - e,),
J=0

we can solve (3.7) for the Cauchy kernel

i (2541) trace (™) B(g,)]
J=0,1

1
Of -

o(g™'e,)

(3.9)

[o0]

. (o1
= %. 2: (2j+1) trace E(g gc)’
j=0

where trace means trace in HY. An explicit expression for the
Cauchy kernel is quoted in Gunsonl6'
In passing, we point out that (3.9) and the matrix elements

of (3.7),

E;fmr(gc) = fdg C(g'lgc)D;zmv(g) ,
G

are the natural generalizations of the Heine and Neumann formulas,

1 - .
7 ;{% (25+41) P (=) Q(z,)
J:
QJ(ZC) - % f dz .ch— Z : PJ(Z) .

-1
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IV. Derivation of the Addition Theorems from SU(2)

In this section -- without using any group theory -- we
systematically derive from the SU(2) addition theorem. all the
addition theorems stated in Section II. The domains of convergence
are emphasized. In Section V we shall present a direct and simul=
taneous proof of all the addition theorems using elementary group
theoretic techniques.

In what follows, the variables and w or o are

215 %o
treated as independent variables, while (¢, z, ¢') or (&, z, &)
are dependent and given by the set of equations g= g8, in SL(2,C).
We have relegated these details to Appendix E.

1. First-Kind Addition Theorem

As our starting point we take the SU(2) addition formula

(3.4), which we assume is correct:

P J
o~ @l 1(z) el A Z e ) (2) @ i(z,). (4.1)

n=-j

In (4.1), z; = cos ei, j=0,3,1..., and (m,m') denotes a
lattice point in region 5 of the helicity lattice diagram shown in
Fig. 8(b). Figure 1 shows the specific helicity lattice for the
second d-function in the summand of (4.1), and the line segment AA'
represents the sum.

As a preliminary to the continuation of (4.1) in Jj, we

replace the finite sum with an infinite sum to get
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[¢o]
| |
—imp J Sim' S oy 4
e imo démr(z) e ¢ = E: e din (Zl) dnm'(zz)’
n:..OO

(4.2)

where n retains the integrality of Jj. When Jj = 0,3,1..., Egs.
(4.l)kand (4.2) are identical because we have éxtended the sumiation
from segment AA' to segment BB' by adding segments AB and A'B',
both of which lie entirely within the "sense-nonsense" portion of the
helicity lattice where dgmv(zz) has square-root zeroes, as does
din(zl)' For details on these zeros, see Appendix H.15.

We now consider the possibility of continuing Eq. (4.2) to
complex Jj. From Table H.1l4 we observe that, when -1 <z < 1,
dimt(z) is Carlson in Jj. In fact, both sides of (4.2) are Carlson
in j as long as the sum converges. Since (4.2) is true for
j =0,1,2... it follows from Carlson's Theorem that the equation is
true for general complex J, with the unique Carlson continuation
in j of dim' , provided by the hypergeometric function in
(H.2) with (H.13).

It should be clear that, as 2J moves away from integral
values, the portions of the sum in (4.2) represented in Fig. 1 by
segments AB and A'B' become "activated", and the question of
convergence arises. If convergence is required, the analytic con-
tinuation of (4.2) in By 3750 is to some extent restricted. This
follows from the asymptotic behavior of the summand which is,
according to (H.13), (H.32), (H.48) and (H.22),

zl+l
Z- =1

|

. . . S s , 1 2
[e7H W din(zl) dim'(zg)l " eln,.lim(utlnlm+22:i. e—élnlznl
o1

.o ~lnfin |
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as n -+ * o, The convergence condition is therefore

2z +1 Z

zl -1

- T > o (2]In(w)]) (4.3)

2

.

Z

ignoring the possibility of power convergence. For w real,

zl + 1

il > 1. (4.4)

Equation (4.4) is certainly satisfied by Re(zl) >0, Re(zz) >0

(as quoted in Bateman), but more generally, as a simple geometrical
argument shows (4.4) is satisfied and (4.2) converges if Re(zz) >0
and zq lies anywhere outside a disc containing zq = -1 and

lying entirely within the left-half zl—plane, as illustrated in

Fig. 2. Thus, a portion of the interval (-1,1) near z) = -1 is
necessarily excluded, a fact which reappears if we take

z; = cos 8;, [6;] <m, in which case (4.4) requires that [6,|+]6,]
< m. (In order to show that the right-hand side of (4.2) is Carlson,

we assume that ’61 and 0, respect this condition prior to con-

2

tinuation. )
Converting (4.2) to P-functions via (H.13), we obtain the

first-kind addition theorem given in (2.1),

(o]
1Tt

5lm¢ Pim!(z) e—:.Lm L. }: e-inw Pgn(zl) Pimt(z2),
n= -—C0

(4.5)

with validity as described in Section II.1.
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2. Hybrid Addition Theorem

Consider Eq. (4.5) above with 21125 > 1. We continue (4.5)
Fiq -
onto the left hand cut in 22 by taking Z, - z, e 1 = -z, + ie .

Therefore, ¢z2; -1~ e+1w1/22; - 1. From (E.15), this implies that

- T I '
z e, so »/zz -1 >e :Lﬂ»/zh2 -1 . Then (E.19) and its ¢

T
counterpart tell us that ¢ > ¢ but ¢ -+ -¢ . The result of these

changes is:

-imp _j T +im'  _ Z -inw _Jj J o T
e Pmm' (-z + ie) e e Pmn(zl) anl( z, * ie) .

n:..oo

(4.6)

! ! 2
If in (4.6) we take m +-m , multiply by G ', and

-m
subtract the resultant equation from e+1m times the original

Eq. (4.5), we conclude with the help of identity (H.29) that

e-lm¢ Qrinn'(z) Mt b Z o 1R P;I]m(zl) Q;]]m'(z2):
n:_OO

(4.7)

which is the hybrid addition theorem (2.5).
From the asymptotic behavior of the summand as n - o given

by (H.47) and (H.48),

L ) | T z1*1
Ie—lnm Prim(zl) ng'(zz)l N e|n . Im!*ln|m+lm [-1.e-%|n *%n 7T
zt+1
1nl. 2 ‘
eﬂu‘%"nl fn 22—1 | s
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we find that the convergence condition for (4.7) is

.22 + 1

22 -1

42, + 1
in z1 ; 1
1

> |Im(w)] ,  (4.8)

1
- 5,2{[1

L
2

again ignoring the possibility of power convergence. Condition

(4.8) is the same as that reported in (2.6). Again, if =z W are

17722
real, (4.8) is satisfied by z, > 2 > 1. More generally, a domain
similar to that in Fig. 2 may be obtained.

The second form of the hybrid addition theorem shown in

(2.5) follows trivially from (H.7), (H.23) and (H.32).

3. Second-Kind Addition Theorems

We apologize from the start for the apparent circuitousness
of the present section, but remind the reader that a direct proof
of the second-kind addition theorem may be found in the next section.
There seems to be a certain amount of "analytic distance" between
the addition theorems of the first and second kind.

In terms of the ® functions, the hybrid addition theorem
(4.7) is

o~ lmé Qim'(z) Jim = gg;w (—1fﬁq1e—inw Pin(zl) Qim'(zz):
(4.9)

1
where for now we consider Jj,m,m ,n to be integers. Starting

with 2z ,z, > 1, we continue (4.9) onto the left-hand cut in =z

1’72 1

in a manner similar to that in which z2 wés treated in Section 2

1 !
above. This time ¢ > -¢ and ¢ > +p so we get
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[ e

M gl (-arie)e ™™ = N (P I Bl (o Tie) @ i(a))

n=-—x
(4.10)

If, in (4.10), we take m - -m, multiply by Ggl(—l)J+l and
add the resultant equation to (4.9), we find, making use of identity
(H.28) on the left and (H.29) on the right,

—n‘éﬁinw Q%m(zl) ng'(ZZ) )
- I(n-j) T(j+n+l)

1Mo Qim’(Z)e_im ¢ :'Gi E: (1)’

n=-c

(4.11)

An examination of the gamma functions in (4.11) shows that

the sum is really two distinct sums, one running from -« to -j-1,

and the other rumning from Jj+1 to +wo ; moreover, these two sums

are the same, so the right side of (4.11) becomes

@ (2) @ 1(z,)

I(n-j) I'(j+1+n)

-2 Qi E: (1) 0

n=j+1
(4.12)

Next, the sum in (4.12) may be Sommerfeld-Watson transformed

to yield
1 ~inw J J
E.._T-T- f dn e/ an(zl) QI]III'(Z2) ]
C

where C 1is a clockwise contour containing =n = j+l, #2, ... . We

now give w a sufficiently large, negative imaginary part so that
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the contour may be opened up. The new contour runs upward just to

the left of Re(n) = j + 1, but may be harmlessly shifted to Re(n) =
1
Renaming variables & = i¢, E' =ip , 0 = 1w, A =n we find:
'.ioo
£ 'g' 1 J{ﬁ Ao 3 .
-mg J -m . 1 -\ LJ J
e~ @& '(z)e T dd e "7 g (2 ) By (2,).
-0
(4.13)

1
So far, Jj,m,m are still integers, but from Appendix H.1l4

!
one can show that both sides of (4.13) are Carlson in J and m

1 1]
and then, from (H.23), also in m. Taking m->pu and m =+ pu we

obtain
ioo
£ ] we o1 [ A, § j
-u - - =+ - /
e Quur(z) e = 17 dr e qu(zl) QXU'(ZZ) s
~joo

(4.14)

where now j,u,u' are all complex. .Equation (4.14) is the second-
kind addition theorem (2.7).

The convergence condition for (4.14) may be obtained from
the behavior of the integrand as A - *ie, From (H.47) and (H.23)
we find:

|0 (o) @ ()l oM TImel .y Reul e -1 ol

arg(Z2+l>l

Z2-l

1 i 1
EERELC R

0.
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Therefore the integration in (4.14) converges if

7z, +1 Sz *1 .
Llarg ( L + | arg ( 2 + |Im(a)| < w . (4.15)
2 Z,~ 2 ZA -1
1 , 2
(a4l ‘
Since argg(21_1) ’ =7 only when 1z € (-1,1), we see that when

a 1is real, (4.14) converges for all Z),%, except when both these
variables lie in the range (-1,1).
The contour in (4.14) plays the same role as the contour in

the easily proven identity [GR 6.422 (3)]

j_oo
-2-11?5 f ax T(5+1+0) T(j+1-1) = 272972 r(254+2) , (4.16)
~-jo

which happens to be the double asymptotic 1limit of (4.14) as Z1%
+o0o , If Re(j) < -1, the contour must be deformed as shown in
Fig. 3 so as to cbntinue to separate the pole chains of the integrand.
As 2j -+ a negative integer, the contour is pinched, generating the
singularity appearing on the right side of (4.16).17

The alternative second-kind addition theorem (2.11) is

obtained from (4.14) by running the Sommerfeld-Watson process in

reverse, i.e., closing the contour to the right. Thus,

. vt . e . j'(z ) J "(z,)

-uE J -u & J m-j -mo Qﬁu 1 Qmu 2

TR - 26 Z . (=17 e ™ Ty Y Ty erem)
m=j+

(4.17)
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1]
where J,H,d are still complex. From (H.47) we have, as

Re(m) - + oo

-mo J’ . j S
e (2 )@ (z.)y
R (21) By 1 (25) A eRemeBea g ) [Reif+[Ren'| -1
I(m-j) T(Jj+1+m)
z.+1 Z,+1
%Re me Q,n-é-]-‘:f’[ %-Rem*ﬂ,n 22—1|l
e 1 e 2
(4.18)
Thus, (4.17) converges when
1 z,+L
1, 121" 1 2
—Z-IQ,nl-Z-]-T_T’I + E-IQIII 22—1 I < Re(on) 3 (4.19)

which is the same as condition (2.12).
Interestingly, the mixed-basis addition theorem given in
(3.5) just barely converges due to the |Re ml_l shown in (4.18) and

the rotating phase of the summand.
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V. Group-Theoretic Proof of the Addition Theorems

So far we have "proven" the addition theorems in two different
ways: first, the "proof by interpretation" given in Section III, and
second, the "proof by continuation" (from the SU(2) addition theorem)
given in Section IV. Whereas the first method relies on external
calculations of UIR matrix elements, the second method depends on
tedious manipulation, in particular, Carlson continuations.

In this section, we give a self-contained and direct proof
of the multiplication formula corresponding to the second-kind addition
theorem. This proof will automatically be valid for complex J,H,
and p', and from the proof it will be obvious how to prove any
addition theorem. The crucial facts turn out to be: (1) the Legendre
functions are annihilated by the invariant Laplace operator of SU(1,1);
(2) the integration appearing in the multiplication formula is the
invariant integration of the subgroup K with respect to which
SU(1,1) is reduced. For the first-kind multiplication formula,

=30(2), whereas for the second-kind, K = S0(1,1).

The second-kind multiplication formula (2.15) reads

@l\(g) ), 1(a,) e ™52 = 2 a, ™2 ) e)
(5.1)
where we have defined
Tt
J _ o ME gl ey ME
T (g) = e Quu(z)e ) (5.2)
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and we recall from Appendix E.3 the ordering of the parameters
g = 8,8, = (5,v,8') = (£,v,6) (E,,v,,E,), and o =& + &,
The proof of (5.1), and thus of the second-kind addition
theorem, conveniently divides into three parts. First, we show that
both sides of'(5.1) satisfy the same partial differential equation
(the Laplace). Second, we show that both sides in fact solve the
same ordinary differential equation (the Legendre). Third, we show
that both sides are the same solution of this ordinary differential

equation.

1. Part 1 of Proof

The Laplace operator of SU(1,1) is defined as
22 o/ s
le) . 7e) J(3+1) , (5.3)

where jQ(g) is the Casimir expressed in terms of the differential
generators given in Appendix C. In particular, 32 was calculated
for the continuous basis [SO(l,l) reduction] in Eq. (C.11).

If fﬂv(z) is a solution of the Legendre equation (H.1l)
ALIs1,v;52) ffN(Z) = 0,

then the function fﬂ\)(g) ,

tot

J . -MEL] -u £
fw(g) = e fW(Z)e p
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is a solution to the Laplace equation
8 ed (g) = 0 (5.4)
1V . .

The differential generators calculated in Appendix C.3 are

the generators of the left-regular representation
-1
8)g) () = #(e'e), (5.5)

where

T(g)(gl) _ exp[_iglfl(g)] exp [_ivliz(g)] exp [_igifi(g)]
(5.6)
Since [j2(g),'ki(g)J = 0, 1t follows that [L(g), T(g)(gl)] = Q0.

This is why the Laplace operator is invariantlB:

T(g)(gil) [L<g) f(gilg)]

r(g18) f(g) . (5.7)

That is, L(g) = L(glg)émtihg on f(g) is left-invariant in the
same sense that the Haar measure d[g} = d[glg] under G is

left-invariant.
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From the right-regular representation
(g ) £(g) = f(geg,)
R =1 S

one may conclude that the Laplace operator is also right-invariant
because, although the left-and right-shift differential generators
are not the same, the Casimir and Laplace operators are the same
whether expressed in terms of either left-or right-shift generators
[See Appendix F] .

From the invariance of L(g), it is at once obvious that

both sides of the multiplication formula (5.1) satisfy the Laplace

equation L(gl):f(gl) = 0

1}
o

n{én) Qﬂx(gl)

i

L(gl) Qﬂul(g) ]'_,(gl) Qﬂul(glg2) = L(glg2)Qﬂu|(glg2)

= 0.

This completes part 1 of the proof.

2. Part 2 of Proof

We show here that both sides of (5.1) satisfy the Legendre
equation éﬁ(j;u,l;zl) f(zl) = 0. This fact is obvious for the left-
hand side of (5.1), and is almost obvious for the right-hand side.

We have shown in part 1 above that the right-hand side of (5.1)

= RHS(gl) satisfies the equation L(gl)RHS(gl) = 0. If we can

show that
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1
RHS(g;) = e RiS(z,) (5.8)
then it will follow that 5(§j;u,k;zl) RHS(gl) = 0. Thus, part 2
of the proof is complete if we can demonstrate (5.8). This is
where the S0(1,1) invariant integration comes into play.
We begin by "exploding" @ (glgz) in (5.1) via the left-

regular representation (5.5) and (5.6), so that

[o0)

ms(s) = & [ ag, 2 182 @l ey
= %- J{ dg, r2 exp( iiiﬁi(gZ)) exp(ivlﬁé(gz))
-exp(ig %, (82)) gl 1(g,) (5.9)
~ From (C.11), ﬁi(g2) = -i 22 , SO We may replace the rightmost

exponential operator in (5.9) with exp(-uil), achieving half the
goal of demonstrating (5.8). The leftmost operator cannot be taken
through onto Q(gz) because ?1' and Kz do not commute. However,
by considering the general form of the expression in (5.9), we may

successfully expose the factor e-xgl as follows:

o

f dEge)“52 exp (€i é—g‘z)F(?;g)

f at, e*2 Rz, + g)

=oo

(5.10)

(Eq. (5.10) continued on next page)

2 5/
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(o]

_ oM J i, R .F(‘gz‘) ’ (5.10)

-00

where we have in effect used the regular representation of S0(1,1),

the group multiplication property of D(EZ) = e}“g2 , and the invar-
iance of ur d [52}. Therefore,
S0(1,1)

RHS(g,) = eTHEL AEL -{%-Jf dg, A2 exp(ivlﬁz(gz))ﬁﬂu'(gz)},

(5.11)
which concludes part 2 of the proof.
3. Part 3 of Proof
We have shown that the Legendre equation
AIswA52,) £(zy) = 0 (5.12)

is solved by both sides of the second-kind multiplication formula

Qﬂx(zl) Qiu'(zz) = '%‘j‘ da e % [e-quﬂu'(z) M E ],,}'

(5.13)

and we now wish to show that both sides of (5.13) are in fact the
same solution of (5.12). From (H.39) we see that, for complex j,
. . . J -J-1; .
the linear combination of guk(zl) and qu (zl), which any
solution of (5.12) must be, is completely determined by the asymptotic

form as zl + o ., Thus, we shall prove that both sides of (5.13)
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19

are the same solution of (5.12), with the same coefficient™’, by

showing that (5.13) is true as Z, > . But, using the information
~given in (E.20) with w:= -ia and (E.22), it is easily shown that
the asymptotic 1limit of‘(5.13)_as zq + oo jig a version of the inte-~
gral representation for Qiur(zé) given in (H.58). This concludes

our proof.

4. Proofs of the Other Multiplication Formulas

The formulas (2.13) and (72.14) may be proven by the same
procedure as above. Partil of the proof goes through intact, since it
depends only on the generai g1°8, = 8 structure of the multipli-
cation formula. Part 2 goes through as above except K = S0(2),
so equations (5.10) are correspondingly different. It is here that
the restriction that (m,m',n) be integers of half-integers arises.

Part 3 is then shown by taking =z, +  as above, then using (H.57)

1
or (H.58).

Regarding the hybrid multiplication formula (2.14), we men-
tion one detail which causes its proof to differ slightly from the
others. In part 2, the proof that both sides of (2.14) solve the
Legendre equation in Zq fails when Zq = Zp, because in this case
Z = 2.7, * /éfz-.l'-/géz— 1' cos (w)—>1 as w=* 7, so the

singularity of Qimv(l) touches the endpoints of the integration in
(2.14). This has the effect of causing a discontinuity in the
right-hand side of (2.14), treated as a function of 2y, 8t 2z = 2,

z, > 1 we find by the above procedure that

and for 245 5
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é%- dw einw‘{e—im¢ Qim'(z) e—im ¢ 1 (5.14)
-7

= O(zy7y) P (7)) Q) 1(2,) + 62 -2,) QF (2)) B 1(3,) .

We have chosen the first term for the analytic continuation in zq

and Z, discussed in Section IV.2.

5. A Note on the Integral Representations for @ and P

From Eq. (5.11) derived above and Appendix C.3 it follows

that
J J - 1 )\52 . [ ~uEs 4J
Balz) @ (25) 2_[ a,, "2 exp(iv; K,)| e g (2
where
K. = ishé(u csch v, + cth 9 ). ich 0
5 = is 52 U cse v2 cth v, 52;- - ic £2 53;
!
Setting u = 0 and taking V, > ® on both sides we find, according
to (H-39);
j _ T(g*v) 1 +AE 2y -,
Zalz) = wETy 7 %p e 2ex(ivy ky)e T,
-0
(5.15)
where
> . P} .y s
k2 = 181152‘8?2' +  i(Jj+1) chF,‘2 .
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. 1
Now, using the symmetry (H.22) and replacing u » -u; X =+ -y,

52 > d, Z) > 2 “we get

o o]
- .. - = 1 _ .- +‘ t
Qﬂ (ehy) = LGIrl-w') %f do, e MY 1V K2 [e‘“ 0‘] (5.16)
" r(g+i-n) % 2
with
- . .
k2 = i [sh o aa + (j+1) ch a]

A result similar to (5.16) follows from the equation corres-
ponding to (5.11) in the proof of the first-kind multiplication
formula. The answer may be quickly guessed by comparing (H.57)

with (H.58) and using o = iw :

T
. . . - ,
P) 1(chv) = Hojm) —l-f e 0]
I'(=j+m ) 2m :
-
(5.17)
where
>
k, = i [sin W Bw + (j+L) cos uJ

Equations (5.16) and (5.17) allow us to interpret the
Legendre integral representations (H.57) and (H.58) as "matrix ele-

ments" of the operator exp (i\)Eé) s, Where fé is a realization

of the SU(1,1) Lie generator K, as a single-parameter differential

2
operator. The full single-parameter Lie algebra appropriate to

(5.16) is



L)

A

* -

kl = _18a

g [ B aed + (5+1) oh .]
5 = 1 |sha-d, J ch a

_?

= [eh ad + (j+1) sh a]

3

which is just the realization discussed by Mukunda”, Eq. (4.15), and

by Hermannl5

, Eq. (5.3). Note that the S0(1,1) generator Ei is
"diagonal'.

In order to show directly that (5.16) and (H.58) are the
same, one must compute the action of an exponentiated differential
operator. A trick for doing this is given by Hermann, p. 104 (but
sign error in Eq. (5.8)).

Considering the discussion of Appendizx D, we are not surprised
at this interpretation of the integral representations since, for
special values of j and the helicity labels, the Legendre functions

are precisely the SU(1,1) D; UIR matrix elements, aside from

inessential factors.
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VI. Application: the Diagonalization of Convolution:. Equations

The group-theoretic addition theorems are particularly useful
in diagonalizing integral equations of the convolution form. If
A,B and C are functions defined on a Lie group G with invariant

measure dg, consider the "integral equation"

Mg) = [ Brc](e)
= fdgl B(g,) C(g,) (6.1)
G
where g, = gl"l g. Let D; k'(g) be the matrix elements of an

irreducible representation of G 1labelled by the eigenvalues ©
of the invariant operators of the Lie algebra (e.g., Casimir
operators). Indices k and k' represent the eigenvalues of the
simultaneously diagonalized generators in the basis ]0,k> .

The functions Dik'(g) satisfy an addition theorem
o) - ' O 4 o
D' (8) = Spn Dy "(g7) Diwi(ey)- (6.2)

Applying j dg Dg,k'(g) to both sides of (6.1) we find
G

f ag Ag) 1Y, '(g) fdgl B(gl)fdg Dy ' (8) Cle,)
G G G

g g
Sk" Gf dg, B(g;) D" (g ) Gdg2 C( €, ) Dy 1(82);

where we have used the Haar invariance f dg = f d[glng f dg2,
G G G



ot

—4b-

as well as the addition theorem (6.2). Defining the projections

f

t

fdg t(g) Dy, '(g) (6.3)
G

o
kk
we arrive at the "diagonalized" equation

o (0} (o}
Aae' = S¢" B Cmer - (6.4)

1. Diagonalization in the Discrete Basis

Specifically, if A,B and C are defined on G = SU(1,1),
the equationZO

2m

2T o '
A(6,v,0") = f 2 f dv,sshy f B B0, ,v158)) C6995,6,)
o ¢ =21

(6.5)

may be diagonalized by means of the first-kind Legendre addition

theorem (2.1)

J _ J J
Pte) = ) Ple) Ple,) (6.6)
nN==00
where
Tt
J s O -im ¢ (6.7)
%m;(g) = e Pmm(chv) e
The resultant dlagonalized equation is
®
IR Y R *
A Bm Com (6.8)

= =00
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where

£l
mm

f ag £(g) P 1(g) (6.9)
G

with dg as shown in (6.5).
Once the diagonalized equation is "solved" for Aim'
(e.g., if B is given and C is a function of A), the function
A(g) may be reconstructed from its projections according to (G.15a).
The diagonalization above was discussed in commection with
the partial-wave analysis of particle scattering amplitudes by
Serterio and.TOlleT2l(1964) and in further detail by Toller<?

(1965).

2. Diagonalization in the Continuous Basis

23

Assume now that the functions A,B,C are defined™ only
on the semigroup SO+ discussed in Appendix E.3. To diagonalize

the equation

8

AE,v,E ) fg%l avl-sh\if L1 BE V1,8, ) OE,,v,,E)

-00

o

(6.10)
we apply the second-kind Legendre addition theorem (2.7)
oo
J - 1 J J
Tn'(e) = = | arg,(e) & 1 (8y) (6.11)

~jo
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where
J M)y oM E
Quup(g) = e Quu (ch v) e ‘ (6.12)

The result is

ioo
J _ 1 J o ad
Auu, = 5= f dx BM CMJ' (6.13)
-jo
where
J _ J
fu' = f dg f(g) Qw'(g) (6.14)

Sot

with dg as shown in (6.10). Again, if the diagonalized equation
is solved for the Aﬁu} , the unprojected function A(g) may be

obtained from (G.17a).

3. The Diagonalization of Abarbanel and. Saunders

Consider the following special case of (6.10),

A(‘:V:‘) = f %&;’l f dvl Sh\)l B(":Vly') C(E2:V2:')
=00 le)
or
Az) = f %Lf dz) B(z,) C(E,,2,) (6.15)
—00 1

where a dash indicates an absence of functional dependence on the
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variable appearing in (6.10). We have removed the (non-compact)

1 1
integration over £1 and have set El = O.24

"It is easy to show that
the diagonalization procedﬁre is unaffected by'the fact that the

full invariant integration fails to appear in (6.15); only the
projection of B is different.

From (6.13) we find, after cancelling delta functions, the

following diagonalization of (6.15):

iOO
io_ 1 f i
al, = 1= dA b2y Cio (6.16)
—~joo
where o
J_ J
at J{ dziA(z) Qoo(z) (6.17)
1
Jo_ J
by -j dz, B(zl)Qo)\(zl) (6.18)
1
jo_ [ 4 N
“Xo —] Tf dz, C(€2’22)e Ho (ZZ)'
-0 1

(6.19)

Specializing still further by removing the gz—dependence from

C(Eé,z2), we get Cio = &(ir) cgo , 80 the diagonalization of
o [o0]
Az) = 481 | 4z B(z) o(z.) (6.20)
2T 1 1 2 ot
-00 : 1
is
1
a, = = b, c. 6.21
j T j CJ ’ ( )
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with all projections of the form

a, = dz A(z) Q.(z) .
J J (2) Qy(2)
1
In terms of simplicity, (6.21) is comparable to (1.2).
The special case of the second-kind diagonalization given
as (6.20) and (6.21) was discovered by Abarbanel and Saunders®’

(1970) and further analyzed by Cronstr6m26 (1974).

4. A Physics Comment

Briefly, the physical significance of the simplified convo-
lution Eq. (6.15) may be understood in terms of Fig. 4 which shows,
in schematic form, the typical multiperipheral integral equation
(in a particular kinematic configuration, see CDM [2#). The x's
mark '"CDM frames"27 and the variables shown are the boost para-
meters which 1link the frames in a manner similar to the usual Toller

or BCP variables.28

Of course these variables are also the 80(2,1)
group variables we have been using all along in the continuous-basis
So+ semigroup parametrization, and g = €185-

The multiperipheral integral equation symbolized by Fig. 4
is a statement of (s-channel) unitarity. This means that, roughly
speaking, A,B, and C are the discontinuities of reggeon-reggeon
scattéring amplitudes, with "cluster masses" sensed by the variables
v, vl’ and v2. We have included in C the "reggeon propagator"
whose "energy" dependence is characterized by the variable 52.

The loop integration in the multiperipheral equation is the

Lorentz invariant d4k, where ¥ 1is the 4-momentum of, say,
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the lower reggeon of the reggeon propagator. When this momentum

is viewed from the leftmost CDM frame, one finds that:

&k = aT - ag,

where
dT = kzdde
- —-— —
v Azt,tl,tzj dtldt2/8( t)
! 1 1 T
= %-du (-u ) dz -z 2
and

dgl dEl » d(ch vl)

! !
The variables k,w,t,tl,tz,u ;2 are described in CDM and AS
but are of no concern here. The point is that the "loop phase space'

a4

k factorizes exactly into a residual "transverse integration" dT
(which survives in the partially diagonalized equation), and the
group phase space dgl which appears in (6.15).

In other words, the t < 0 multiperipheral equation is
a convolution equation with respect to the So+ semisubgroup of
S0(2,1) and may therefore be exactly diagonalized by the second-kind
addition theorem. This is in contrast to the approximate diagonal-

ization obtained by use of the Mellin/Laplace/S0(1,1) transform

which treats the integral equation as if it were a convolution with
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respect to S0(1,1) rather than S0(2,1). A problem with this
S0(1,1) or'"rapidity" approximation is that certain potentially sig-
nificant effects (such as threshold behavior) get washed out in the
diagonalization process.

The reason that Abarbanel and Saunders were able to partially
diagonalize the ASF equation using (6.20) and (6.21) is that the ASF
equation has an energy-independent pion propagator in place of the
more general reggeon propagator, i.e., C(zz) in place of C(gz,zz).
The diagonalization of a fully reggeized multiperipheral equation
(such as the planar bootstrap) would look more like (6.16) or

27,29 The variable A 1s related to the analytic continuation

(6.13).
of the helicity of the reggeon propagator in the same sense that the
full projection given in (6.14) is the helicity continuation of the

Froissart-Gribov projection with spin. We hope to clarify this

comment in a future publication.
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Note Added to Manuscript. After writing this report we have discovered,

much to our embarrassment, the existence of the references listed
below, in particular Ref. A. This pleasant paper ( a follow-up to
Ref. 25 ) contains on page 269 a statement of the second-kind addition
theorem and multiplication formula, and makes the identification of
the second-kind Legendre functions with the continuous-basis SU(]l,1)
matrix elements (albeit for the Cq rather than the D; series). We
suspect that similar information is contained in Ref. C which we have
been unable to locate. Moreover, Ref. A effects the diagonalization
we have given in Section VI,2, though we might still claim to have
done so with more generality and conciseness. Ref. B extends the
work of Ref. A to the t=0 case. Ref. E describes the significance

of the semigroup which we stumbled upon in our Appendix E.3. Refs. D
and E discuss the possibility of projecting amplitudes onto (Banach)
representations of the semigroups of SU(1l,1) and SL(2,C) which support
the multiperipheral integration in the t< 0 and t=0 cases. Finally,
we note the critiéisﬁ lodged by Ref. F against "improved" expansion

‘theorems like our (G.17).

A) H.D.I. Abarbanel and L.M. Saunders, Ann.Phys.(N.Y.) 64,254 (1971).
B) H.D.I. Abarbanel and L.M. Saunders, Ann.Phys.(N.Y.) 69,583 (1972).
C) N.W. Macfadyen, Carnegie Mellon University Report, October 1969.
D) s, Ferrara et. al., Nucl. Phys. B53,366 (1973).

E) G. Soliani and M. Toller, Nuovo Cimento 15A,430 (1973).

F) N.W. Macfadyen, Commun. Math. Phys. 28,87 (1972).
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Appendix-A: Lie Generator Conventions

1. Lie Algebras and Weyl's Trick

The six abstract generators of SL(2,C) satisfy the Lie

algebra

Ji’Ji = i eijk Jk

-

IoKsl ® T e K

K ,Kj = -legy I (A.1)

From (A.1) and the Campbell-Hausdorff formula it follows that

-i¢d; iedy  _ . . .
e Jj e cos ¢ Jj + sin ¢ sijk Jk

101 g, ML - g ¢-KJ + sin ¢'€ijk K,

J
o VK1 Jj S v-Jj + sh Ve sy K,
VKL K, VKL o op VK - sh veeg s T (A.2)

The SU(2) subgroup of SL(2,C) is generated by

dJ J

1’ J2’ 3
with the Lie algebra
P&,JJJ =1 Eijk Jk

and Casimir
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For the SU(1,1) subgroup of SL(2,C) we choose the

generators

K, Ky, I,

with the Lie algebra

[JB,Kl] = i K, [JB,KZ] = -iK
{Kl,KZ} = i I (A.3)
and Casimir
2 2 2 2
J = -Kl - K2 + J3 . (A.4)

The 8U(1,1) Lie algebra may be obtained from that of

SU(2) by the mapping
(Jl’Jz’JB) -> (—i Kl}_i K27J3) ]

a fact sometimes referred to as Weyl's Trick (see Appendix B.1l).
In the explicit realization of SL(2,C) given below, the above
mapping is an identity.

There are several simple automorphisms of SU(2), two of which

are the obvious cyclic permutations. Two more are
(J1’J2’J3) - (_Jl)—J2)J3) ’ (JZ,_J]_,JB)

From these four, a list of 23 automorphisms may easily be constructed,
allowing any generator to be mapped into (plus or minus) any other
generator. Using Weyl's trick, the corresponding list of 23 auto-

morphisms of SU(1,1) is at once found. Two of these are.
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(K11K2)J3) -+ '("Kz:Kl’JB) 2 (iJB’K2, i Kl)-

(A.5)

The first shows (see below) that our generators Kl’K2 and J3

are trivially automorphically connected to the "Ji" used by

thundaB,
1
n " = = ——
Jo J3 5 03
1.
" 1" = = —
Jl K2 5 i 02
1.
1 n = -— [ S
I5 5 510

The second automorphism in (A.5) is useful in interconnecting relations
between the discrete and continuous-basis parametrizations of SU(1,1)

(see Appendix C.3).

2. Explicit Realization of SL(2,C).

The Lie algebras given above have the following two-dimensional

realization,
- 1 = L1
J; = 50 K. =10, (A.6)

where o, are the Pauli matrices. The matrices of the one-parameter

subgroups may be found from

'Y - cho+ o tsh algeg) ,
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. 2. 2. 2.2
where g complex 3-vector and o = (al oo, + aB ) They are:
. Y A%
C¢/2 —1S¢/2 ch ) sh 5
-167 » DK g2
e 1S¢/2 C¢/2 e sh 5 ch 5
Vv s W
Cq},2 Sq)/‘2 ch 5 -ish >
-1¢dp -ivKp Y %
e S¢/2 C¢/2 e ish 5 ch 5
e—1¢/2 0 e\)/2 0
e—1¢J3 - 0 e1¢/2 e~IvK3 =\ 0 e—v/2
(A.7)
Whereas the Ji are hermitian and the e"l(bJi are unitary, the Ki
are anti-hermitian and the e—IVKi are non-unitary.

3. Relation to the Lorentz Group

Throughout this paper we have avoided repeated mention of
S0(3) with SU(2), and SO0(2,1) with SU(1,1). Physical applications
of the addition theorems (e.g., diagonalizations as in Sec. VI)
usually involve these Lorentz subgroups rather than their SU counter-
parts. For this reason, we include here our convention for the
connection between SL(2,C) and S0(3,1).

If we represent an arbitrary SL(2,C)‘group element by

- -i'[a *J+Db- K]
g = e oy v

the corresponding element of the (proper orthochronous) Lorentz

group SO(3,1)+ is given by
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w1 1‘]
A.v 5 trace [Ou goa,8

3

according to the usual homomorphic comnection (see Rihl, 0 Eq.(1-6) ),

' o Lt uoo_ :
X gXg X=cux =(t+z x—ly)

x+iy t -1z

The 4-dimensional Lorentz generators defined by

Mo (e—i [g.g + Q‘K]) ?v

are then given by

0 bl b2 b3
R S L R

b2 as 0] -8y

LPB -2, ay 0 ]

According to this commection between SL(2,C) and SO(3,1)+, the
Lorentz transformations corresponding to (A.7) are of the active

type, e.g.,



-1vKq U‘.
(e ) ).\)

rchv shv O

shv chv O
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(e7H¢73)

H

o
[oX)

(A.8)
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Appendix B: Representations and Bases for SU(1,1)

In this appendix we derive the classes of UIR's for SU(l,l)31
and define the meaning of discrete, continuous and mixed basis. 1In
each basis the forms of ‘the matrix elements are given, but the ex-

plicit functions are deferred to Appendix D.

1. The UIR's

The unitary irreducible representations (UIR's) of SU(1,1)
are all of infinite dimension, since SU(1,1) is non-compact. In

the discrete basis, to be described below, the basis vectors lj,m>
which span the representation space of a UIR are eigenvectors of J2

and J just as in the usual SU(2) analysis. In fact, using

3)
Weyl's trick32 as mentioned in Appendix A,

J, = J, +iJ, -1 K, where X, = Kl + i K2 s

and our knowledge of SU(2), we find for SU(1,1) that

1
| Z
K, [jm> = [(m i'%)2—'(,3’ +%)2] |jm+l> (B.1)
<jml KK |jm> = |[K[5m>[17 = (m+ 57 -+ 3P
(B.2)

To say that the UIR {|Jj,m>} is unitary is to say that the
generators Kl’KZ’JB are hermitian with respect to the scalar pro-
duct <'[> . Therefore, <.l> had better be a scalar product.

As (B.2) shows, this will only be true if (m + %02> (§ + %02
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for all Ijﬂn5 in the representation. From this simple fact, and
the truncation possibility implicit in (B.1), we immediately know

all the UIR's. With the spectrum of J_, restricted to integers

3

and half-integers (for single-valued representations of SU(1,1)),

the nontrivial UIR's are displayed in Table B.1.

TABLE B.1 The UIR's of SU(1,1)

name range of J J3 spectrum

2 j=-%+is (s real) m = 0,%1,%2,...
3 . 1, . 1

csl j=-5+is (s real) m=—-2-,i%;--~
E° _i<j‘<o m = 0,%1,+2

q P Iy =Ky e e
+ . 1.1 . .

Dk J = —'-2-',0,5, 1, %"" m = j+l,j+2,...
- 1,1 . .

Dk Jj = - E’O’-é.,l’%’ m = —J-—l,-—J-Z,...

The UIR's are called, respectively, the integral and half-integral
continuous (or principal) series, the exceptional (or supplementary)
series, and the positive and negative discrete series. The notation

is that of Bargmannl who uses

q = -j(j+1) k = Jj+l (B.3)
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so that

+ 8 (B.4)

- 1 v’l
Tz Az -9 -

q = k(1-k) =

S L

=
I
f -

+
[
0]
(]

|

2. Discrete Basis

The vectors |j,n1> which diagonalize J2 and J3 s
21 of s . . .
J lJ1m> = J(J+1)|J’m> J3|J:m> = mIJ’m> P)
(B.5)

comprise the "discrete basis" of the UIR 1labelled by Jj, so-called
because the spectrum of the compact generator J3 is discrete. As
indicated by (B.l1), the points of the spectrum are separated by

one unit and, since J, is hermitian, the spectrum lies on the

3
real axis. The normalization and completeness of the |[j,m> are
given by

1

<gmljm's =8 1) - ) lm <iml
m

(B.6)

where 1Y indicates the identity in the Hilbert Space H  of the
UIR, and the sum on m extends over the appropriate range as shown

in Table B.1l.
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The abstract elements of the Lie group SU(1,1) are repre-
sented in HJ by operators U(g), where g indicates some para-
metrization of the group elements. The UIR matrix elements in the
discrete basis are then <j,m[U(g)|j,m'>.

The traditional parametrization of SU(1,1), and the one

33

appropriate for taking discrete-basis matrix elements, is:

1]
Ul(q))\)’q)') e—lq)JB e_l\)KZ e—ld) J3 . (B.?)
!
If we restrict ¢,v,¢ to the regions
1
0 ¢ <2m, 2T ¢ < 2T, v >0, (B.8)

SU(1,1) dis covered once, but S0(2,1) is covered twice. For

t
50(2,1) this double coverage can be removed by giving ¢  the
same range as ¢.

The discrete-basis matrix elements then have the form

o
. Yar. Ut ~i -1 Lo =1vK , it
q’mlUl((p)\):d) )lJ:m> = e imé S] im ¢ <j)mle 2 lJ)m % .

| (B.9)
3. Continuous Basis. If the non-compact generator K1 is diagon-

alized instead of J3,
2. s . . .
lie> = (314> K 132> = »plip> ,
(B.10)
we have the "continuous basis" since the spectrum of Kl is the con-

tinuous real line (again, Kl is hermitian for UIR's). Actually,
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for the Cq UIR's, the spectrum of K1 is the real line twice, and
a bi-valued multiplicity index must be added in the kets, l_j,p,"b>.34
We shall be concerned only with the D£+ UIR's ‘where there is no

multiplicity index.:

The normalization and completeness relation for the Dk+

UIR's are
[oe)
1] 11 >
<5,pld,p > = &(p-p ) 19 = _[. dplJj,p> <i,p| >

(B.11)

where J +takes the values shown in Table B.1l. It turns out to be

more convenient to use the purely imaginary variables u = ip

1

!
and p§ = 1ip so that
1 T,
K ldus = -tulju> Gouldu > = S(ip-ip )
i
o 0 [ algw <l (B.12)
—~joo

This 1s the Mellin-Barnes contour which appears in the second-kind
addition theorem (2.7).

An appropriate parametrization for the continuous basis is
. ' ~iEK; -ivk, -if'K
UZ(E,v,E ) = e 1le 2 e 1. . (B.13)

The sector of the SU(1,1) group manifold which admits this para-

metrization with v > 0 forms a semigroup SO+ (see Appendix E.3),
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+ N :
so for g e SO', the continuous-basis matrix elements for the

Dk+ UIR's have the form

tot

. UNTEN uE - RN AV ST
<IulUEv,E ) Gu> = e ™S gV fLu

(B.14)

4. Mixed Basis

Matrix elements in the "mixed basis" have J._, diagonal

3

on one side, and K, diagonal on the other. Any element of SU(1,1)

1

can be parametrized in either of the forms

1
e—1¢J3 e-an2 e—lE Kq )

U3(¢’n)g) =
(B.15)
U(En,0') = T oI oTI0 Iy

The mixed-basis matrix elements for D * then have the form

k
1 1 1 ! ink !
. y . \ | o - 110 - e -1 .
<J,mlU3(¢,n,€ MNiw> = e ¢ e M 2 <j,m|e n 2|5,u >
] 1 g 1 ! ! .QK 1]
. . - -1 N -1 .
<3ulu, (e Mim> = e e ¢ <iule™2)5m>

(B.16)
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Appendix C: The Lie Generators as Differential Operators on SU(1,1)

Following the approach of Bargmann2 we show in general how
Lie generators can be realized as differential operators on the
group manifold itself. Then we explicitly calculate the operators for
each of the SU(1,1) parametrizations. The main point of this effort
is to obtain the second-order differential operators for the Casimir
which are used in the following appendix to "compute" the explicit

SU(1,1) matrix elements.

1. The Method

Consider an n-parameter Lie group associated with one of the
classical matrix groups. Let the generators be Gi’ the parameters

Py s and let U(p) be a representation so that

up) = e P11 IRbip o Pbin (g

In this chain of operators, some of the generators may appear more
than once, others not at all.
The generators Gi can be realized as differential operators

6i on the manifold p (the parameter space) according $03?

& up) = -G UWp) . (c.2)
Since the G, satisfy the Lie algebra [G G ] = ck G so do the
i i’75 ij k¥’
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) up)

Y

[

I_'GN

<aiaj = 6363) U(p) (c.3)

L ]

-> >
= (—GiGj + GjGi) U(p)

> >
- (08 v i um, o8] = o

= - [Gi’c’j] u(p) = -cli{j G U(p)

_k =
If U(p) is taken to be the "elementary" matrix representa-

tion, (C.2) is a simple system of equations which can be solved for

the functions Xij(p) which characterize the operators Eﬁ s

dp,
pJ

n ,
- d
G =) e &= - (c.5)
j:l .
We find it more convenient to think of U(p) as an abstract repre-
sentation and, in effect, let the Campbell-Hausdorff identities do
the work of solving these equations. This method is illustrated

in the following sectiomns.

2. Discrete Basis

We calculate the "differential generators" Ei for SU(1,1)

using the standard Bargmann parametrization
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1
U, = U1(¢,v,¢') = 103 VK =10 J3

First,
au
1 = . -~ - s
5 - 13,50 P 33 19, . (c.6)
Next,
aU . . . !
— = 3 (haxy) VR T
v
. ~i¢J 1Ty .
= (-1) (e 3 K, e 3)’01

(-1) (cos ¢ K, - sin<pKl) Ul ,

where we have used one of the Campbell-Hausdorff identities (A.2).

Therefore,
> . >
-1 BV cos ¢ K2 -sin ¢ K, . (c.7)
Finally,
Uy _14J,  -1VK 147
— = e 3 e 2 (—iJB) e 3
d¢

( —i ) e—i¢J3 ( e-i\)K2 J

iVKZ i¢pd
3 © ) e 3] Ul

(Equation continued on next page)
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il

(1) [e'i"’JB (chvd L

3 + sh\)Kl) eiq)JB} U,

= (-i) [ch\)J’3 + shv(cos¢ K, o+ sin ¢ Kz)l U,
Therefore,
13, = chvJ, + shv( % +sin¢ &,)
-1¢ —cv3 S\)COS¢1 sn(b.2 .
(c.8)
Combining (€.6) through (C.8) we find
' . . . ‘
for Ul(d),\),d) ) = e_1¢J3 o VK2 e—lq) I3
—.).
J3 = =i 'c)q)
+ — . A + o . 8
Kl = -1 cos¢ i sin ¢ v
> ’ . .
K = -isin¢A-1i cos ¢ 3 (C.9)
2 v
> - - > o , .
K, = Kli 1K, e (—1Aia\)),
where A = (3,' - chv 9.)
-~ shv ¢ i o)
. 2 _ 2 2 2 . : .
The Casimir J = —K1 - K2 + J3 is most easily computed from

2 2

- 1 .
J7 = J3 - 5 [K+,K_ with the result

[Se——)

+
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2
¢)

ey

= 83+cth\)3\,+(1&2—8

1 1 2 .2
= — 9 [shva + 9% + 3°,- 2chv 9.9,'

2 2 1 2 . .2, 1
= (2 - 1) 9, + 223 + ZEF?TI3 [é¢ + 3¢ - 25 3¢3¢ ] ,

where =z = ch V. (c.10)

3. Continuous Basis

To get the corresponding expressions for the-parametrization
' 3 -iv szt
U,(&,9,8 ) g1ty IVKy B

procedure. However, since this parametrization can be reached from

1 we can repeat the above

the preceding parametrization via the automorphism (Kl’KZ’JB)

!

1
> (iJB’K2’iKl) and change of variables & =i¢, & = 1¢ , we can

simply translate the above equations accordingly.36 Therefore,
' . 1 VK Lot
for U,(E,Vv,E ) = 18Ky VK, 18K

- S I U .
~ K 19, A RN (13«5 chv 1d.)

->

J, = -ch&A - ish& 93

’ ’ rA
K, = e~ (-iA ¢ Bv)
k, = h&A ich& 9
K2 = -shg - ich & v

2 ;2 . \.2 1 R S U
P o= (P10 v 2z0 4 = [(135) + (18,")% 2a(19,)(13, )]

(c.11)
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again with =z = ch v.

4. Mixed Basis

By setting u = i- -g— in the third of equations (A.2) we
find
e I, e = 1K (c.12)

from which it easily follows that

vyo_ -i¢d . .
Us(ém,8 ) = e 73 -inkp -1 Ky

. . Lt -k
[e—1¢J3 S-iVEy -1 JB] 6 22
(c.13)
! ! . Mo !
where ¢ = =i and v =1+ 1i 5 . Now, let Ei(d),\),d) ) be

one of the Bargmann-parametrization generators given in (C.9).

According to (C.2) and (C.13) ,

> ! . ! :
C;(4,v,0 ) Uy = -GU, = éﬁ(¢,n +15, -8 ) Uy . (C.14)
The derivation of the first equality in (C.14) goes through exactly
as in Section 2 above; it is unaffected by the presence of the factor
exp (- ng) sitting on the right side of (C.13). The second
equality in (C.14) indicates that the differential generators in

the mixed-basis parametrization U, are the same as those in the

3

1 !
Ul parametrization with ¢ -+ -if and v > ni+ 1 -725- . Therefore,
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> (iJB"Kz’iKl) to the U

now

Finally, for U
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- e—i¢J3

for U,(¢,n,8 )

—i8¢ A
-1 <3os<1)./\+isincb3n
>
Ki‘
-i sin A -i cos ¢ E)n
2 1 2 .
9 + thnoa - —> [3 + (49
n n ch™m ¢
(z2— 1) 9% + 223 + --21—
z 2 (2%- 1)

7z = ish n.

4

results

3

6 > -iE, £ -+ -id to get

=¥

for U4(€,n,¢') = 7K

1}

-ch&A - ish & Bn

>

K

+

we apply the automorphism (K

!
o~Inky -1€ Ky

1

———

ichn

1]

[(iag') - (ishn) 8"’}
= oMO(in + 3y)

é)z - 2(ish n) Bq)(iag')]

2 im0 i fen
[L-Bd) + (13€ ) - 2% a(b(lag )} >

(c.15)

1}K21J3)

(C.15) with the variable change

1]
e—an2 e-1¢ J3 .

—_
ichn

[SIRREEREN]

e*8(1p + 3,)

(Equation continued on next page)
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Pz (FP-1)0d v 20+ —F [(1a£)2 + (8,7 - 22(13)(-3, )}

(Cc.16)

where again z = ish n.
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Appendix D: The Casimiric Differential Equation and Explicit

SU(1,1) Matrix Elements

In Appendix C we constructed realizations of the SU(1,1)
Lie generators as differential operators on the group manifold

according to

©,0(g) = -G,U(g) ,

—>
with Gi and U(g) operators in a representation space, and Gi

the differential generators in the parameters. In particular,
>
2 2
J“u(g) = J7U(g) . (D.1)

Therefore in some basis ]j,a>’we have

*2

ot [}
7? <,alu(g)]j,a> <j,a|Fu(g)|j,a >

]
<j,al3%u(g)]j,a >

. 21. ! 2
<j,ali(g)i®li,a> , [U(g),J } = 0

(541) <dalue)ls,a’> . (D.2)

so that the UIR matrix elements are eigenfunctions.of the Casimiric
differential operator. If we define Zf(j;u,v;z) as in (H.1),
then application of 32 in the forms (C.10), (C.11),(C.15)and (C.16)

+t& the matrix elements (B.9), (B.14) and (B.16) tells us, according
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to (D.2), that
. ! . -ivK,;. !
%(Jim;m sch V) <J:mle * 2IJ:m> = 0, (D~3)

-iVK

1 1
A(isu,u seh v) <j,ule” " 2|j,u> = 0, (D.4)
. i . —inKo .
K(ismusish n)g,mle 2|5, u = 0, (D.5)
. i .y —inKa .
K(jsu,-msishn ) <jule” 2]j,m> = oO. (D.6)

Therefore, the matrix elements of all UIR's of SU(1,1) in the
discrete, continuous and mixed bases are Legendre functions in the
z-variable indicated. The only question that remains is: which
Legendre functions, and what are the coefficients?

For the discrete-basis matrix elements we know that

1
m-m = integer and <j,m|j,m > = 8y, o - From (H.41) and
4
(H.42),
j j ln-m' |/2
. J _ . J - |m-m
lim P° "(z) = &6 _', 1im @ '"(z) ~v (z-1) .
g1 m,1 21

We regard this as evidence, if not proof, of the fact that all the
discrete-basis UIR matrix-elements turn out to be, with a convention-

al phase choice,

. -iVK,y., ! . ' = j j
<j,m|e 2|j,m> = (+1)® m"Géfm Pém'(ch V)

dgm- (ch v+ie) , v 0. (D.7)
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As proof of this result, we take K, = iJ2 in SL(2,C) and ob-
serve that (D.7) is exactly the analytic continuation of the SU(2)
Wigner d-function onto the right-hand cut (see Fig. 6(c)); but
see also Ref. 16 and references in footnote 31.

For the continuous-basis Dk+ matrix elements, © and u'
are both imaginary and <julju'> = 6(ip=iu') . From (H.41)

and (H.42),

]
. J (u -u)/2 c ol - s
lim P’ "(z) v (z - 1) lim '"(z) = +n§(ip-ip') .
ss] MM g Quu

Again, this is suggestive of the result for the Dk+ matrix element

which is

-ivKs . ' 1 j
<pouleT T Rlu > = e - "Qﬂu'(ch v), v 30.
(D.8)

This matrix element has been explicitly calculated by Pasupathy and
Radhakrishnan37 using the method of Mukunda and Radhakrishnan.38

From the work of Lindblad andNagel,39

it is possible to
evaluate the basis transformation matrix <ju[jm> directly from
the Lie algebra, and to conclude that the mixed-basis matrix element
is a second-kind Legendre function. In a calculation based on
Mukunda3 and following the lines of footnote 34, we have found that,

in a phase choice consistent with the continuous-basis matrix

element, the Dk+ mixed-basis matrix elements are:
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« T
; + o5 (m-u) .
<j,mle anZIJ,u> = A-e < Qi (+ish n),
s

-inkK +i Izr'b(m"'U) QJ :
<G ule™"2|jm> = A e u,-m (+ish n), n:o

where

-

A = ,\[?'[I‘(J*flm)l‘(—ﬁm))—

(D.9)

These matrix elements may also be computed using the non-local
(i.e., non-multiplier) construction of Mukunda and Radhakrishnan.38
The mixed-basis matrix elements for the C_ series have been cal-

40 see also CDM.27

culated by Kalninsj
We feel that all these matrix elements should be rigorously
obtainable from the Casimiric differential equations and some

boundary conditions without explicit construction of the represen-

tations, but we do not know how to do this.
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Appendix E: Elaboration of g = 2,85

Here we state in detall the relations implied by g = 185
in SU(2) and in the discrete, continuous, and mixed bases of
SU(1,1). In Section 5 the results are summarized and a relevant
asymptotic 1imit taken. One may obtain equivalent parameter rela-
tions for g = 8185 in terms of half-angles by simply multiplying

the SL(2,C) matrices given in (A.7).

1. Su(2)
For each g in g = glg2 we use the parametrization and

abbreviated notation,

1

1
e-1¢J3 e—16J2 e—1¢ J3 = 604
Therefore,

g8, = 600 =600, * 6,00,

(ie]
1

2 (9=61) 6(4 ~6,) = 8,(6,+0,)0,

>60¢ = 6w 6, .
(E.1)

In the last line we have, without loss of generality, set ¢1
1 1
= ¢2 = 0 and defined w = ¢, * ¢2 . Applying (E.1) in S0(3)
to the z-like unit vector (0,0,1) we find, using (A.8), the three

equations
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sin ¢ sin 6 = sin w sin 62

[t

cos ¢ sin 6

cos 6

cos 0, sin 8§, cos w+ sin 6. cos @
1 % w 1

2

cos 61 cos 62 - sin 61 sin 62 cos Ww.

Si% similar equations are obtained by substituting into these three

the replacements suggested by

1

606 ¢ = el w o

S ¢ e w=0¢ 6t

Y
> we, o =670 0.

The results are then summarized in an obvious notation,

Ce - Celceg - SG_LS\GQ

Cy = (C,-S, C +selc

61 92 w

!
The equations for ¢ are obtained from those for ¢ by 14

C

w S T WL - Cg

(2}
1l

)/Sg Sy S /S, -
0, ¢ 0,°w 8

(E.2)

2.4

By convention, we take 0 £ 6 ¢ m so that sin 6 > O.
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2. SU(1,1): Discrete Basis

For each g in g = g,82 Wwe use the parametrization

t
e-1¢J3 e—l\)K2 e—lq) J3 = 4 \),4)'

Therefore,
€ = g8, F 0V = bvib- bvs0
= (¢ - d)l)v(qb' - ¢;) = vl(d)i * 9,0V,
Sove = V0V, (E.3)

again removing redundant parameters. Since K2 = iJ2 in SL(2,C),

the parameter relations are obtained from those of SU(2) given in

(E.2) by the replacements
6 » iv cos 6 > chv sin 6 > ishv ,

and the same for 6, and 92. Therefore we find,

1

chv = ch\)l ch\)2 + sh\)l sh\)z‘ Clw ’ shv= + Vch2\) -1

ch v2)/sh'\), S

Q
1]

(chv, shv, C. .+ shv

1 5 Cy = sh szuyshv .

1 6

(E.4)
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1
with the expressions for ¢ given again by 1<72. By convention,

v > 0.

3. SU(1,1): Continuous Basis; the Semigroups sof_

For each g in g = glg2 we take
. . v . ' '
e—lEKl e—viz e—lE Ky = EvE

,  (E.5)

so that

[1¢]
|

g8, ¥ EVE = EVEEVE,

> (E-EME -£) = V(& +E)v,

= £V E' = V.0V

LoV, s (E6)

t
where o = Sl + 52, etc. From (A.2) we can turn K. into J, by

|
=
s
N
=

e K. e = -iJ (E.7)

Therefore we rewrite (E.6) as

1
e—ngl e-vi2 e—lE K1 - oiviKp e-laKl‘e—1V2K2
L] . . . . ' . . . L]
= e—1(-1£)J3 o~ 1VK> e—l(-1€ )33 o—IV1K, e—l(—loc)J3 o~IvoKy
1 1
But this is (E.3) with ¢ = -i& , ¢ = -1 , w = -ia . Thus we

translate (E.4) accordingly to get:
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chv = ch v ch v o+ sh v; sh v, ch o (E.8)
chg = (ch v sh v, cha + sh vy ch v2)/sh v (E.9)
shg = sh v, sha/shy , (E.10)

1
with & expressions given by I=*2.

An essential difference between the continuous-basis para-
metrization and those considered earlier is that not all of the

SU(1,1) manifold is accessible to (E.5), e.g., the J3 rotations

are excluded. In a rough sense, only 1/5 of the SU(1,1) and

2/5 of the 80(2,1) manifold can be reached.42

Therefore, if we
define the sector of SU(1,1) accessible to (E.5) as So’ it is
not obvious that 81,85 € So = g = g8, € SO. In fact, from
(E.8) 1t is clear that if v, and v, have opposite sign, it is

likely that ch v <1, & v not real = g ¢ So’ In other words,

So is not closed under group multiplication, although g € So

= g_1 € So. (1If SO were closed it would be a non-trivial 3-
parameter subgroup of SU(1,1), which is nonsense.)
On the other hand, if v

and v, have the same sign,

1 2
chv>1 and ge S . Moreover, from (E.9) we see that Vv has
the same sign as 21 and Vs If we define So+ as the half of
S, with v >0, and S, as the other half, then we have shown
that SO+ is closed. However, SO+ is not a subgroup of SU(1,1)

because, aside from the above remark, the inverses of the elements

of So+ all lie in So_. An object such as So+ is called a
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semigroup, so So+ and SO_ are semisubgroups of SU(1,1).

4. 8SU(1,1): Mixed Basis

We take

. | . o ! !
g = ¥ DK S . EVE

. . - !
g, = e £1f1 ohike 1Ty S Eme

1

=10 »J -in oK ~1€ 5K '

&2 23 (AL R PonsE,

so that g remains in the continuous-basis parametrization,

but g1 and g, are in mixed-basis form. Then,
' ' '
g = 88 =¥ &VE = &né; o8,
= (- E)WE - £)) = ny(6; + én,
= £ve = nen,
or
K VK, 8K | -ingK, -lwdy _-ingk
(E.11)

Using (E.7), the right side of (E.11) becomes

. .m) . . . [ . T
e [nl-lz.] K2 ot {1“’11{1 e_l[n2+12]K2
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Therefore, (E.11) is the same as (E.6) with v, =y - i g-,
v, =N, ¥ i g-, and o = iw . Then we may convert (E.8)— (E.10)

according to

ch\ﬁr~+ -1 sh nl ch v2 + i sh n2 sho->1 Sw
Sh\ﬁ; + -1 ch nl sh v2 - 1 ch Ny ch o - Cw
to find:
chv= sh glsh n, + ch nlch ', Cw (E.12)
1
sh & = —(ch nZSw)/Sh V; sh & = +(ch nlsw)/Sh v

(E.13)

1
ch & = (sh nlch nzcw + ch n,sh n2)/sh v; ch & = (162).

1

(E.14)

Although all of SU(1,1) is accessible to the mixed parametrizations
gy and g5, the product g = 8185 will not in general fall into
the sector SO defined above, in which case &, 'v and E' are
imaginary = g € SU(2). For our purposes, we restrict to n, > 0,
N, >0 and cos w » 0 1in which case g ends up in So+ as seen

from (E.12) and (E.14) above.

5. Summary and Limit as |zq] > .

The information described in the preceding sections can be
summarized by the following redundant set of equations together with

Table E.5:
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z = 2%, * W/zi - i j/zg - i cos w (E.15)

Z, = 7% - \/'z—2 - llvzi - l‘ cos ¢ (E.16)

cos ¢ =[z2"zi— +lezé2—l cosw}/”zz-l

(E.17)

sin ¢ = sin w Vzg - l‘ /.‘/z’2 - l‘ (E.18)
et 1o . (22 \Vzi -1+ zl“ zg -1 Cosw%* isinu-)\/zg :I)/sz— 1'.

(E.19)

1
The expressions involving ¢ are obtained from (E.16) through
1
(E.19) by taking ¢ > ¢ and I>2.

Important asymptotic limits of (E.15) and (E.19) are:

Izll >® 1 g = 21(22 + Y zg - cos w) (E.20)
+i4 +i<b' Vzg- 1+ zzcos w*isinw
e” = 1, e” = : (E.21)

2 .
22+'\/z2 1l cosw

£ +£' V,Z% -1 + Z2Ch o * sh o
e” = 1, e * (E.22)

z2+ Vzg—l ch o
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TABIE E.5
Zy % Z »/&ff-lj»/ﬁg-l‘. 22 s 8
. Su(2) Cel 062 Cg 1 Se‘1 i S62 i S ) ¢' w
. discrete ch Vi ch‘\)2 ch v sh V1 sh V5 sh v [0} ¢' w
. continuous ch 21 ch ) chv sh vy sh Vs, shv -i& -i E' -ia
mixed -ish n_lish N, chv -iCthl ichn sh v -i{ —iE’ w
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" 'Appendix F: The Regular Representations

The sO-called regular representations are discussed in Chapter 1
of Vilenkin's excellent book;9 we mention here only a few details
relevant to Section V.

In a shift representation, the elements of a group G are
represented by shift operators acting on a space I, of functions

.which are in turn defined on a homogeneous space M. Thus,

(g) f(x) = £(g]" x), (F.1)

where g, € G, felL, x e¢M. It is easy to show from (F.1l) that
(g, ) T(e,) = T(g.8,)

For a Lie group, the operators T(gl) may be expressed in
terms of the Lie generators, as e. g. in Eq. (5.6), and then these
generators will be realized as differential operators in the variables
of M.

It may be shown that any homogeneous space M 1is equivalent
to G/H, the space of cosets of G with respect to some subgroup H.
If we choose H = {1} , then M = G and we have the "regular"

representation,

e,) f(g) = £(e] €) (F.2)

where now the Lie generators are realized as differential operators

of G itself, i.e., in the parameters of G. In fact, the
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 generators of the regular representationare exactly those generators
constructed in Appendix C, as we now show.

First, in (F.2) we visualize f(g) as a function of the matrix

u(p),
fep)) = F [0(p)

where, as in (C.1),

U(p) = e~iP1 Giy -ip2 Gip | e™1Pn Gip
(F.3)
We shall assume that (F.3) is symmetric in the sense that Gil =Gy,
Gi2 = Gi 17 ete., and also that each of the generator matrices is
n—
either hermitian GI = Gi or anti-hermitian Gz = "Gi'

The notion of the derivative of a function of a matrix,

which we need below, is easily shown to be
F [u(p) + 50) % F [u(p)] + trace [suev] F [up)] , (F.4)
where 6U dis a matrix of small parameters, and

_ ]
Yig * T g3

If we parametrize the operator T(g(p)) exactly as in (F.3)
but with the operators Ei replacing the matrices Gi’ we may

compute the éi by examining (F.2) near the identity using (F.4).
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We find,

§§p) = -trace [Gi-U(p)'V} (F.5)

For example, in SU(1,1) this is

a B 9y O

2 (B) o irace o, '( )( ) B>

1 ' o
B o

Applying (F.5) to the matrix U(p) we find that

& up) = cup)

which shows that the ‘Ei(p) are the same as the generators con-
structed in Appendix C.

The representation (F.2) is the left-regular representation.
One may also construct a right-regular representation on G  according

to

gl ) £(g) = f(gg)

2 (p)

from which it may be shown that the right-shift generators &%

are given by

Rai(p) = + trace [U(p)-Gi'V]

Py =+ o),
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The right-shift differential generators also satisfy the Lie algebra
of G (see C.3). With the stipulations made above for the form of

U(p), the left- and.right—éhift generators are related by

£\ ] %
£, - 1[61(13 )} , (F.6)

with F depending on whether Gi+ = +G, , and

P = (Py,Pps++ P 15 D)
p = (Fp,Fp, s+ FPys*D;) (F.7)

where the signs in (F./7) are ¥ depending on the hermiticity of the

generator associated with each parameter in (F.3), GT

= G, .
i i

From (F.6), left- and right-shift Casimir operators are

related by

2 _[ZehH|*
&)

which, in our discrete basis parametrization of SU(1,1) becomes

R32(¢,v,¢') _ [32(—¢','v-, -¢)J x

From (C.10), the terms in 32 are all real, and 32 is symmetric

1
under ¢ <« -¢ , so. the Casimir (and Laplace operator of Section

V) 1is the same in terms of left- or right-shift generators.
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‘Appendix G: Expansion Theorems

In this section we derive the standard Peter-Weyl theorems
for SU(1,1) and SU(2) using the Green's function method. In
addition, we give a simplified expansion theorem for functions

defined on SO‘L c SU(l,l).43

1. The Green's function method.

If L is a self-adjoint differential operator, then in the

Hilbert space spanned by its eigenfunctions we have "Cauchy's

bt

formula,"

1 . f -1
- 553 éﬂ mszx (L-A)" = 1, (G.1)

Defining the Green's function g(x|y;A) by

(L - 2) elxly;n) = &(x-vy) , (G.2)

application of the operator Eq. (G.1) to (G.2) shows that

S(x -y) = -z N ax g(x|y;2r). (G.3)

To be specific, we take

2
2, d a . 1 .
L = (1-z%) . Z2 - 2z T - (1_22) [u V5 - 2usz ,
(G.4)
A= =i(g+1) . (G.5)
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Taking the solution of (G.5) ,

- 1

sz e ]For = -3 71 -z, mAazoo

it is easy to show that (G.3) becomes
o S |
8(x -y) = =g dj(2j + 1) glxly;d) (G.6)
¢

where the contour C runs from - %-— io to - %-+ i , circum-
seribing the right-half j-plane at |j]| = <.

The Green's function may be written as
g(xly;d) = —uy(x duy(x,)/e(d)
with
e(3) = (2 -1) wlu,u,) ,
1772
where Uy and u, are solutions of the Legendre equation,
(L-2)Wz) = L5, vsz) wiz) = 0,

with uy matching a boundary condition at the left end of an interval,
u2 at the right, For the interval (1,») we choose Pﬂv for uy

and the z = "limit point" solution égu for - From (H.11)
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we have c(j) = -1 and

g(xly;5) = + P (x.) 4

J

so a completeness relation for functions on the interval (1,») is,

from (G.6) ,

»_'=1f..jj
8(x - y) 7T Y aj(2j + 1) PUV(X) 2 ()
(G.7)
with C as described above.
2. Discrete-Basis Expansion Theorem for SU(1,1).
As our starting point we take the above result,
8(z.-z.) = T U[\dj(2j+1) pJ "(z.) Qj' (z,) ZoyZo 3 1
172 2T 1 mm 1’ Fmm 27’ re2 7 =
C
(G.8)

As the contour C is shifted left to Re(j) = it wraps a finite

1
- 5

number of poles of the integrand so that (G.8) becomes

- 3+ic
_ 1 ey o j
Slrz,) = sy ai(2i+1) Bl 1) @ (2)  (6.9)

B k)
J t

1 . m-m o j J

+ 1 Z (2541) (LI 1(a) Bl (),

7=

!
depending on the integrality of (m,m ), and

where € =0 or %
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J = max(lmf,lm‘l) - lm—m'l— 1. (G.10)

The location of the above-mentioned poles is shown in Fig. 8(h),

and the pole residues are given in (H.53). Note that there is no
pole at j = - %- due to the factor (2j+1). Since PY = P-J—l,

the integration in (G.9) senses only the odd part of @° so we

replace, via (H.33),

!

3y 1 )gde _gi-li . m . _oymem g
Qm m—§ 2 [Qm m Qmﬁm } 2 cot T (J+€) (-1) Pm m

to get
-1 4i d
!
_)1 aj 1 . . \@-
-3 -iw J=e
e pd o J
I f(zy) PIr (z,) . (6.11)

] t t
Multiplying both sides by e-lm(¢1_¢2) e°1m(¢l_¢2) summing on

1

m and m , and using the order interchange suggested by Fig. 8(h),

oo J oo +o0 —00
w‘ -
DN Yoo L
1 = 1 1 s
m,m =-»  j=¢ Jj=e m,m =j+1 m,m =-j-1
(G.11) may be rewritten as
) © .
_ .1 dj(2j+1) . z m-m oJj i
S(gl g2) 41 tan "',”.z_j_l_ET . ("l) Pmm (gl )P_m,_m (g2 )
130 m,m =-°
-i-

(Equation continued on next page)
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(25+1) (ﬁ + 2\(—1)”"‘“'%'@1)Pi'm’_m%gz),

m,m =+j+1 m,m =-j-1

+
l\)ll—‘
‘™1 s

()
1}
m

(G.12)

where

1 t
o~ 1md pJ "(z = ch v)e ™ ¢
mm

i

Pe (g)

and

6( gl—g2 ) = ZTTS( ¢1_¢2).6( Zl-zz ).4“ 6( qb]t-(pé) . ( G;13 )

. ! -1 1
Since g, = (¢2, Vo ¢2) , We have g, = (ﬂ—¢2, Vs, ﬂ—¢2) and

t
J - m-mopgy ol
P em'(85) = (1) P ' (&5)

from which we obtain the group-theoretic form of the completeness

relation,
—Ll4jco
= cE
g.-g,) = L dj(2j+1) trace : [bj(g )Pj(g—l)
1 °2 41 tan ﬂZJ+e5 1 2
~1-joo

(Equation continued on next page)
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Do
“rodn ypdcal
trace [Pv(gl)P (g2 )] s
o=t

+
=

Y (241)
Jj=€ _
(G.14)

where € =0 or %- and the traces are in the Hilbert spaces labelled

by the superscripts, see Table B.1.

Equation (G.14) is the Peter-Weyl theorem for SU(1,1),45ﬂ
Symbolically it reads

Jr o .
-1
6(g1_g2) = Sj trace [PJ(gl)PJ(gZ )] ;

so the expansion theorem for functions square-integrable on SU(1,1)

is
f(g.) = S. trace ! [Pj(g )fj} (G.15a)
1 J 1 )
i, f J -1 "
fom dg, f(g,) P '(g,7) , (G.15b)
G
. . . 46
where dg 1is the invariant measure
2m 1 2T
t
- ) . [ 4. [ o
: dg > dz Ir
© -1 =27

Had we simply terminated the analysis back at Eq. (G.8)

and let C be a vertical contour running up to the right of J

47

given in (G.10), we would have obtained the expansion theorem
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f(z) = 5%—5'_].dj(23+1) Pém (z) f;m'
. c

félm' = _/ dz f(Z)Q;;m'(Z) )
1

which is capable of handling functions f(z) which are non-square-
integrable in the usual sense, e.g., f(z) = z° with Re(a)> -%-
(see (H.39)). The above form cannot, however, be extended to a

"full" expansion theorem on SU(1,1), like (G.15), without generating

D£t terms; but see (G.17) below.

R . . +
3. Continuous-Basis Expansion Theorem for S,

Again, we start with (G.7),

5(2,-2,) = 2%1] a3(25+1) B (2)) @1 (2,).
C

t

Since Y and Y are both imaginary (see Appendix B.3), the poles
of the integrand lie entirely in the left half j-plane so that C
.may be taken to be any contour running up vertically to th? r%gh?
of Re(j) = -1. Multiplying both sides by e M(51752) oM (81782)

o1
and applying (—i)z\fdu -‘rdu we find

G(gl-g2 = (-1)% f duj du Z—'“IdJ(2J+1) PJ '(gl) QJ (g2) )
(G.16)

where P(g) and @(g) are now functions defined on the semigroup

Sb+ discussed in Appendix E.3, e.g.,



-97-

e—u£2 Qﬂut(ZZ) e-u 52 ,

J g
Quu (gg)

and

1

8(g-g,) = 2 8(§,-E,) 8z =z,) 21 8(E;~E,) -

. . + .
Therefore, an expansion theorem for functions on SO is, from

(G.16),

1oo< Joo
1 .y .12 v i,
fgy) = 557 fdJ(ZJ’"l) (-1) f duj du Piu_u'(gl) ffm'

C -] 00 -]
(G.17a)
J oo f £ J G
£ J. dg, £(g,) &,,"(e,) (G.17p)
o
with4®

f P ag 2 /‘” dE
* dgf‘z‘;rf dz * >
1 -0

Once this expansion theorem has been established with imaginary
helicity contours, the three contours appearing in (G.17a) may --
with care -- be shifted in their respective planes.

Although only useful for expanding functions defined on
SO+, (G.17) is much simpler than the "full" continuous-basis ex-
pansion theorem obtained from (G.14) by replacing the helicity sums
with helicity integrals, i.e., changing bases. (see Mukunda42,

section 2; PR37, section 3). Our expansion theorem has no discrete
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series contributions, nor does it have the complications involving
the bivalued multiplicity index associated with the continuous series
UIR's in the continuous basis. In fact, one may show, by Sommerfeld-
Watson-transforming the discrete series terms in PR equation (3.1)
and by executing the multiplicity sums, that the full result reduces,

for functions on Sof’ to the expansion theorem (G.17) above.

4. Completeness Relation for SU(2)

On the interval (-1,1) we take w = Pi'm and u, = %-[-J !

+ Q;i7¥] so that (G.6) becomes

6(21—22) = - Q%LE- V/‘dj(2j+1)-%[ ng'(zl)+ QgiTl(Zl)] Pi'm(ZZ) .
C

Using (H.53) to evaluate the pole residues, and noting that the "back-

ground integral" at Re(Jj) = - %- vanishes by the same symmetry noted

above, we find

Aopay) = 5/ (e (AT R (e Bl ().
je=max( [m|, [m [)
(6.18)

1
Again applying exponentials, summing on m and m , then changing

order of summation, we obtain the usual SU(2) completeness relation

co

ir s .
a(gl-g2>=%Z (2j+1) trace [P%gl)PJ(g;l)] ., (6.19)

J=€
with 6(g.-g,) as given in (G.13), z; = cos 0., and trJ(A)
J 1°=2 1

=3 Am.

m=-j
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Appendix H: Generalized Legendre Functions

In this appendix we give the definitions and selected pro-
perties of the generalized Legendre functions. The notation and

nearly all the formulas below are due to Azimov,l though some are

4

taken from Andrews and Gunson. We have not included information

on the recurrence relations or integrals (over z) of products of

Legendre functions. In Eq. (H.59) we give the connection to

9

the first-kind function used by Vilenkin. Our standard reference

for the hypergeometric functions is Bateman volume 1, referred to

by the letter B.10

1. Differential Equation

The first- and second-kind (generalized) Legendre functions

defined below are independent solutions of the differential equation

&L (jsu,v52) w(z) = 0O,
where
2 2, 2

j 2 d s f s +V° = :

K(J;U:V;Z) = (l-Z ) -5 - 27 ..(l. + [J(J"'l) _ (11. 22211\3)].
dz dz (1-2°)
(H.1)

If either v =

O or p =0, (H.l)is Legendre's differential

equation B3.2 (1).
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2. First-Kind Legendre Function P:

3(v-u) 2(v+u)
j -1 z+l (. . 1-
Pﬂv(z) = (EE—) (—Q—J F(J+l+v,-J+v;v—u+l; —Egy%(v—u+l),

(H.2)

Pﬂv(z) is analytic in j,u,v and =z, with zeros described in
Section 15, and with cuts in 2z described in Section 5. From the
linear shift formula B2.9 (4),

F(a,bse;z) = (1-2)° Fle-a,bje; #/(2-1)), (H.3)

an alternative form for Piv(z) is found to be

. J (v -u)

J - [z (.Z_:l il — iy SV

Pru(2) ( > ) —T F(=J-H,=J+v;v-p+l; —YT(v-p+l) .
(H.4)

When v = 0, (H.2) reduces to entry (14) in Bateman's table B3.2:

J - pH , J -
%Jz) sz) A%JZ) PﬁzL(E5)
. J o 48
The most elementary properties of Puv are

-V,-u Hv ('Y uv -’
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3. Second-Kind Legendre Function {:

. . 2(u-v) oy Eu) o =J-1-u
o) = 3 smaray (Z ()T (&
X F(Jolen, 4100520425 125) /T(25+2) (H.6)

Qﬂv(z) is analytic in Jj,4,Vv and 2z except for the poles present
in I(j+1+u)I(j+1-v) and the cuts in z described in Section 5
below. The slash is introduced to avoid repetitious writing of

the phase factor attached to the "true" Legendre functions,
ij = e“i"T(l-l-V) Qj (H 7)
u\’ u\) . .

When v =0, (H.6) reduces to entry (37) in Bateman's table

B 3.2:

w(z) = diz) = ™M)

B(2) = Q2 = oz) . (H.8)

The elementary symmetry property is,

J = g J N
. & or Q Q

/. Wronskians

From the asymptotic behaviors in 2z given below, one may

1
quickly compute the following wronskians, W(a,b) = ab -ba
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(1-22) w(ng, P;];‘u-) = 2 sin n(v-n), (H.9)
2 R Et R | S|
(1-2%) W@, A7) = 7 S, (H.10)
2 J gd -
(1-z )w(PW,QW) = 1 . (H.11)

This shows that P and @ are always independent solutions of

(H.1), whereas other pairs are not always so.

5. The z-plane Cut Structure

Throughout this paper we adhere to the convention that
£(z) = (z - 1) means a function cut from z =1 to z = —o
with principal branch determined by |arg(z - 1)| < m, and f(z)
>0 when z >1 and o real. In other words, f(z) =exp[0t1'n(z—l)}
with 1n(z-1) cut in the "usual" way. For =z on the principal
sheet, arg(l-z) = arg(z-1) ¥ im for Im(z) 2 0, so that
(1 - z)a = eliﬂa (z - 1)a . It follows that (1 - z)a is a
function cut from z =1 to 2z = +° , but we continue to define
the principal sheet by |arg(z-1)| < m . These remarks are illus-
trated in Fig. 5.

With this in mind, we draw the cuts in z for Pﬂv(z) and
in(z) as shown in Fig. 6(a) and (b), where we have slightly de-
formed the cuts for clarity. The peculiar way of qutting Qﬂv(é)
from z =1 1is connected with the definition of é&v(z) below

and the resultant simplicity of the discontinuity formula (H.38).
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6. The Functions P and @

We define these functions by:

Bl() = Bl (a) - e I
@ () = @ (=) - FITOVI2] (H.12)

~

P and @ are simply new versions of P and @ with minus signs
inserted into the first (E%l) factors appearing in (H.2) and
(H.6), which is to say, the corresponding cuts are taken to the
right instead of the left, as shown in Fig. 6 (¢) and (d). For

~

P, whis leaves the interval (-1,1) uncut.

7. The Functions 4 and e

We define these in terms of the twiddled functions above:

J _ Vi . pd
duv(z) = Guv Pvu(z) ,

eﬂv(z) = “Gﬂv . Qﬂu(z) ; (H.13)
where

of o IO#LMOT(j+1-v)

Uv

T( §+1-p)T(J+1+v)

These definitions coincide precisely with the functions used by

4

: 1
Andrews and Gunson ' for (u,v) = (m,m ) in all four of their

regions (see (H.32) below and also Section 15). Clearly, d and
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have the same z-plane structure as P and {.
The advantages of the d and e functions are :

1
(1) when (m,m ) are both integers or both half-integers, the

"switch" symmetry relations are very simplexcompare'to (H.32)

and (H.23)),

Ju - _7 8 -m J o = 39 1

dn'm (-1) dm ( dﬂnﬂn )

. ' .

J = - m-m _J , = J 1Y)

e ' (-1) e ( € m,-m ) (H.14)

(2) the d functions are the SU(2) and SU(1,1) reduced matrix
elements (see (D.7));

(3) The z-plane structure is that of P and é so that, from
(H.38),
eim'(x+is) - eim'(x—ie) = i dim‘(x) , -1<x<1;
(H.15)
(4) the location of singularities in the helicity lattice is
symmetric (see Section 15 below);
(5) workers in.Regge theory are familiar with the d and e
functions.

The principle disadvantage of the d and e functions is
the price paid to get (H.14), namely, the appearance of square-
roots of ratiog . of gamma functions. When u and v are arbitrary
complex numbers, (Gﬂv)% has a distinetly unpleasant cut structure
in the Jj-plane, although it at least truncates when (u,v) = (m,m'),

as shown in Fig. 2 of AG . We point out that square-roots of gamma
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functions do not appear in any of the relations involving P and 4,
and in general, since we are very interested in complex u and v,
we shall avoid using the d and e functions, despite their

advantages noted above.

8. Auxiliary Functions.

In deriving and simply stating the various properties of the
Legendre functions which follow, much effort is saved by use of the

following notation:

Gi . I(j+i+u) (H.16)
I(J+1-u)
Giv . DUI+1In)T(§+1-y) (H.17)

P(J+1-1)T(J+1+v)

Sﬂv . sin m(2j) (H.18)
sin m( j-u)sin m( j+Vv)
Lﬁv _ sin m( j+u)sin m(j-v) (H.19)

sin m( j-u)sin m( j+v)

These auxiliary functions have the following symmetries and inter-
relations:

-J-1 . .3 d 19

Lo Vi R TR
-i-1 I I3 W
S Sou Siv Top Sou
G-j_l - Lj G‘j . SJ Gj = _S_j"l G_j-l
Y STy Ty YIRS TV AV T
J oad J S ot _ J
Guv GVU 1 (Luv - 1) = sin m(u-v) Suv

R
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. ]
When (u,v) = (m,m ) = both integers or both half-integers

(j still general complex) we find

) . o '"f'cot mj, e =0
sim' = Si'm = 2(-1)"™ cot m(j+e) = 2(-1 )"
. 1
tan mj, € = 5
(H.20)

t
where € = integrality of (m,m ). Moreover,

doro= g a9t = gl
mm mm mm °

9. Basic Properties of the Legendre Functions

From the definitions of P and @ and the linear shift

B 2.9 (2),
F(a,bjec;z) = (l-—z)c_a_b F(c-a,c-bjc;z), (H.21)
we have the "switch-and-negate" relations

J - pd J = qd
Plv-u Py . B (H.22)
The "switch" relation for @, (H.23) below, is obvious from the

definition of @. The corresponding relation for P derives from

the famous connection formula relating F(...;z) to F(...;z—l),

B 2.9 (34). Thus,

J - ad gl

2, G, A, (H.23)
J - ad pdL 2 s _ J

Puv Guv P\)u + < sin m(p=v) qu . (H.24)
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The symmetry under Jj > -j-1 of P is apparent from (H.2). The
corresponding relation for @ then follows from (H.24) and the re-

lations given in Section 8:

-j-1

j’ —

Pu\) PW (H.25)
SIS B R S B

qu qu * 5 Suv Guv P\)u . (H.26)

An alternative form of (H.26), explicitly displaying the symmetry

of P in j, is

- 3 -3=1
. @ @ d
R I VIV T
P R = . (H.27)
VU vu

Next, from the linear shift (H.3) we find a simple relation
between Q(-z) and Q(z). Combined with (H.26), this produces the

second equation following:

4

J ol _ = En(j+) o - ol oo
G_qu’_v( z) = e S2) = Gy Q_u’v(—z) (H.28)
Imz2 O
Jpd gy - FWLJ oy 2 #mv oo
G—qu,—v( z) e Puv(z) - e sin ﬂ(J+u,f
J (H.29)
><§Z’.“\,(Z) | -

Converting (H.24) to P and (E! yields (H.30) below, which, when

used in (H.29) to eliminate @, gives (H.31):

exiw(u-\))gﬂv(z) _ Gﬂ'ﬁiu(” + % sin m({-v) @v(z) (H.30)
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» B (2 P
% sin m(u-v) pd _\)('.z)b‘ _ m)(z 2 \)u(Z)
W T(§+1-v)T(-j-v) T(J+1-u)T(=j-u).

(H.31)

Obviously, these formulas can be combined and permuted ad infinitum.
When, with j complex, we let (u,v) - (m,mt ), both integers

or both half-integers, many of the preceding formulas simplify. Most

notably, (H.24) reduces to (H.32), and then (H.26) with (H.20)

produces (H.33):

J - d Jy

P’ = G Po'm (H.32)
03 . ' .

Qim' = Q;iTl + (_l)m—m 7w cot m( j+e) Pém' . (H.33)

10. The Cut Discontinuities

The cuts of the various functions are shown in Fig. 6. It is
implicit that the following formulas always give the total discontin-
uity across all cuts, which, as noted above, we take to be compressed
onto the real axis.

For P we have, from (H.29) and (H.12),

j . j N one Al . : pd
Puv(_x+1e) - Pu\)( -x-ig) = 21 G_\) [31n mj Pu,—\)(X)

1
ETRN

sin mv sin w( j+u) Qﬂ,_\)(x)} , x>1 (H.34)

J fento) L Do (wtn) = o atn Ty B _
Pu\) (x+ie) Pu\)(x ie) 21 sin 5 (p=v) PUV(X)’ 1<x<1.

(H.35)
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For @ we have, from (H.28) and (H.30) ,

Qﬂ\,(—x+is) - Qﬂv(-'x-i'e) = 21 sin mj Givgﬂ,_v(x) , x>1
(H.36)
Qﬂv(xﬁe) - Qi’v(x-ie) = - -izﬂ[gi\)(x) + Gﬂvgiu(x)} sec -:'21 (u-v) ,

-1 <x<1,

(H.37)

but also from (H.30),

(me(xqe) - Qﬂv(x—is) = -iT P;)N(x), 1< x < 1. (H.38)

11. Asymptotic Behavior in z; Limits as 2z - 1

The expression (H.6) for @ is an asymptotic expansion in

z, i.e., F->1 as |z| »®, Thus, for |arg(z)| < m/2,

ln g (2) = 2T(enn(ie-) 29T r(2ge2)

| 2]

i1
v (2)7 (H.39)
From (H.27) it follows that

. J'+l . . _ _J._l
lim P (z) 2° TT(J*+1+)T(j+1-v)z

- : + (Joj-1)
2] W ™8y, T(25+2)

v(z) o (2)9TE (H.40)

We include here the limits of the Legendre functions as

1
2

z »1. Defining e =(%1-) we find
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1im ng('Z) VW r(vaptl) ,  veu # -1,-2.. (H.41)

z>1

eh v Gﬁv/F(ﬂ-v+l) s V-u o= =1,-2.. .

Inserting the above into (H.24) we get

. j 1 V- :
1im Qﬂ\,(Z) = 5 T(u-v) e e Re(p-v) > 0 ;
z->1
1 « ; -
= z T(v-n) - G}]Jv - MY, Re(p-v) < 0 ;
= + 7 6(]'.11—1\)) s Re(p-v) = 0 .
(H.42)

The last result is a consequence of

1im (i:{) f(ix) = F 1 8(x) £(0)
>0

12. Asymptotic Behavior in

For the regular associated Legendre functions the large-j
behavior may be obtained from the quadratic hypergeometric trans-
formations, e.g., B 3.2 (44), which puts J into the "c" position
of F(a,bjc;z). For the generalized Legendre functions this approach
fails and we rely instead on Watson's application of the method of
steepest descents to the standard hypergeometric integral representa-
tions. Watson's.results493re,in part, reported in B 2.3 (16), from

which we conclude that
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(32

!
of =
L]
—~
N

| N
L
i

\is
N
[y
S
D
<
[
N

lim Qﬂv(Z)
FE i
nogEVE IR (H.43)

where |arg(j)| <7 and & = &n(z +"V§§:I) = chnl(z). The functions
of z in (H.43) are cut in the usual way discussed in Section 5,
e.g., &(z) =n(z +w/;§:;‘) is cut as shown in Fig. 7 (a), dup-
licating the cut structure shown in Fig. 6 (b). In Fig. 7 (b) we
show the region of the E&-plane which is the image of the principal
sheet of the z-plane upon which the Legendre functions are defined.
Watson's results‘are given in terms of the variable &.

The condition |arg(j)| < m , which Watson gives for
(H.43), keeps Jj away from the fictitious cut generated by (j)u—v_%
and arising from the asymptotic limit of gamma functions. Recall that
@ is actually meromorphic in J.

For P as |j|+~ we use the above result for @ in

(H.27), along with

. < . - 1 ’
lim &) = 2 otim(v-ud) Im j2 O,

[3]o0  H
to get
e P = = (2P1)* (gPV2 U (o)
V(PR [ ] (H.44)

The identical result follows from Watson's formula B 2.3 (17). It

seems to the present author that the above derivation indicates that
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(H.44) should be true for |arg(j)| < m. However, Watson says
[B 2.3 (17)] that (H.44) is true only for |arg(j)| < g- plus a

section of the left half j— plane,

I
b

. m
-w, < arg(j) < 5 *tw

_ T
0<w< % for Re(&) > 0.

We shall compromise by considering (H.44) +to be true for

larg()] < 5 .

13. Asymptotic Behavior in u

Before giving these limits we draw attention to two errors in
Bateman concerning the asymptotic limits of the hypergeometric func-
tion in the parameters. First, B 2.3 (10), which says that

1lim F(a,bje;z) =1 for |arg(e)| < m, is only true for |arg(e)|

||+

< 54 plus a region in the left half c-plane, even when |z| < 1.
Second, B 2.3 (13), (14), (15) are incorrect, as seen from
F(a,bja;z) = (l—z)—b , and should be replaced by
. L. _ T(e) -a . I'(ec) a-c c-a-b
lim F(a,bjc;z) = o) (-bz) ~ + T(Ej'(+bz) (1-2z)
||

(H.45)

for |arg(b)| < m and |arg(l-z)| < m.

To get the large |u| 1imit of @, we apply (H.45) to (H.6):
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. v v . (u+v)/2
. _ 1 . -1 -j=-1-vfz+1
a (=) - () Ragg (w797 (2)

-V

. o) (5_5}_) Yyt (2_%) ~(w+v)/2 }
(H.46)

z+1

for |arg(u)| < m and |arg (E:T

)I <m,ie., z ¢ (-1,1).
Schematically,

2
)—j—1¢V 3y fn \z-1

n @l (2) v (u . (1) (H.47)

[u [
whichever choice of signs gives the worst case.

To get the large |u| behavior of Pﬂv’ it would appear
that we could use the above VQ result in (H.27) to get an answer
valid for Iarg(u)l < 7 . However, the result so obtained is not
correct due to a cancellation of leading terms between the two @
functions. Instead, we content ourselves with the large |u|

behavior of P;])u(z) = pJ (z) which follows directly from (H.2),

=U,-V
with arg(u) restricted as noted above:
1
X -—u-
J 22—1 g z+1 A ’
1im P\)u(z) = ( 4) . (—7-_—1-) /T(u+1-v") (H.48)
[ [ =0

with |arg(u)| < T and |arg(z+l)| <7, i.e., =z f -1.
2

The large |v| behavior follows from the above results and

the symmetry properties given in Section 9.
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14. Carlson Conditions

A function f(j) is said to be "Carlson" if F£(j) is
analytic in Re(j) > O and bounded so that [f(j)] <M ek]Jl with
k<m as |j| >« on all rays in the right half plane including the
imaginary rays, i.e., |arg(j)| < g-. For example, sh (7 j) and
sin(m j) are not Carlson.

From the asymptotic limit (H.43), it follows that Qﬂv(z)
is Carlson in J§ if |Im(g)] < m and Re(g) > -m. Since |[Im(§)| =7
corresponds to z < -1, and since Re(g) > -m includes Re(g) > O,
we conclude that Qﬂv(z) is Carlson in j for all 2z on the
principal sheet except for =z f -1.

From (H.44), the corresponding conditions for ng(z) are
|Im(£)| <7 and -m < Re(£) < m. The portion of this domain on the

principal sheet of 2z, O < Re(g) < m, 1s the interior of the ellipse

2 2
R I
] e

but cut from z = -1 to the left. [See ellipse A in Fig. 7 (a)l

In the variable u, the 1limit (H.48) indicates that Piu(z)
is Carlson provided that |arg( —;{% ) <7, ie., z ¢ (-1,1).
[Recall that as u »> + i , lP(u)fbexpG-%-ﬂlul)l

Finally, from (H.47) we see that Qiu(z) =<Q§u,—v(z) is
Carlson in y for all 2z on the princiml sheet.

These results are summarized in Table H.1l4.

The significance of a function f(j) being Carlson lies in

50

Carlson's Theorem which states: the set of numbers fj’ j = 0,1,2..
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may be interpolated by many analytic functions, but at most one such

function can be Carlson.

TABLE H.14

Conditions for which the Legendre functions are Carlson

J J
WO ), ()
J z § -1 - z interior of (H.49)
u all z z ¢ (-1,1)

J J
15. Zeros and Poles of Pmm and Qmm

When the helicity labels u and Vv are both integers or
both half-integers, we rename them m and m' and refer to the
functions Pim' and ng' as being "on the helicity lattice". These
functions are, as we have seen in Appendix D, associated with the
SU(2) and SU(1,1) UIR = matrix elements taken in the discrete basis.
As dgm' and eim', the helicity-lattice Legendre functions were
studied in detail by Andrews and Gunson.4 In this section, we
discuss the singularities in j of these functions.

A convenient tool for displaying the Jj-plane singularities
of a function fim' is the helicity lattice diagram used by Andrews
and Gunson. For example, Fig. 8 (a) shows the location of the poles,

zeros, double poles, and double zeros of the function
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1
_ I(#m)r(Jriem )

Gj ! 7
P(§+1-m)r(j+1+m )

mm

The meaning of the diagram is illustrated by this example: if
(m,m') are the coordinates of lattice point P shown in Fig. 8 (a),
and if 2jo = integer is the length of the edge of the central
square, then Gim' has a simple pole as j - Jo‘

In Fig. 8 (b) we show the same diagram with regions labelled

1 through 9. Region 5, including the points on the square, is as-

sociated with the SU(2) UIR's and is sometimes called the "sense-sense"

1
region since both helicity labels m, m are less, in magnitude,

than the angular momentum label j. Regions 2, 4, 6, 8 are then
"sense-nonsense" and regions 1, 3, 7, 9 are "nonsense-nonsense'.
As Table B.1 shows, regions 3 and 7 are associated with the
+ -
t
SU(1,1) UIR's Dk and Dk .

We now discuss the zeros of P;m'. With j complex, as

(u,v) > (m,m') we have, from (H.24),
J - ad J
Pmm'(z) = Gmm' Pm'm(z). (H.50)

For m' > m, the meaning of Pim' is clear from (H.2); for
m > m', we may regard (H.50) as the definition of Pim'. This defin-
ition corresponds to the usual manner of treating F(a,bjc;z)/T(c)
when c¢ - negative integer, see, e.g., B 2.8 (19). From (H.50)
it then follows that Pgm' has possible zeros or double zeros

51

. .
when m >m due to Gém', The locations of the =zeros of

Pim' are shown in Fig. 8 (c).
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51 and double poles of Qim'

In similar fashion, the poles
are indicated in Fig. 8 (d). These poles arise from the gamma
functions in the numerator of (H.6).

In the remaining diagrams we have indicated the zeros and

singularities of related functions. The notation -v@f denotes a

=

"square-root zero", i.e., a branch point (J - jo) . Similarly,

NiR

/X denotes a "square-root pole", (j—jo)- .
From relation (H.29),

t
2 . Hmm o gy = JFEITT o Jaupd
= sin m( j+m) e @ (z) e P (z) - qqn'Pm,ﬁm (-2z),

(H.51)

1
we may deduce two useful facts. First, for (m,m ) in region 5, @

has no poles,.so

Mo F(a) < RS e) L /5 (H52)
2

Second, in regions 3 and 7 associated with the Dki s the residues
of the poles in Qim' are given by the first term in (H.51), since

the second term has zeros in these regions. Thus,

__;!.'._ % j t i = l. jo' ]

EE Q' (2) 4 5 Po'(z) . /3,7 (H.53)
Jo

In terms of the d and e functions (see Section 7) these last

two equations may be written as

tjor jo'm jo
der(z) = (-1) dm.’_mv(—Z) /5
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1 } ,j . : i jO' .
27 1 ; emm'(z) dJ 5 Y (z) . /357
o

16. Integral Representations

The first- and second-kind Legendre functions defined in

(H.2) and (H.6) may be expressed as single integrals of the same

in‘cegrandi2
(0,+)
J oy o D(=d+) 1 , !
Puu'(Ch V) = =3y 21 f(s)ds, Re(-j+u ) >0
—-th X
th 3
(H.54)
(3+1-u ) P
j 1 - I j+l_u . l ] \
Quu (ch v) T > f(s)ds , Re(j+l+u) >0
o (H.55)
where
. 3 l ' '
= g9 Mgeen Y Vy=J-1l+u v ean Vy-J-1-H
f(s) s¥ (s ch2+sh 2) (ch2+ssh 2)

! 1 t
M —lJ—l( 1+s Y4 -\21)"‘]_1“l (s + eth 12)-)_‘]_1_}‘l .
In Fig. 9 we sketch the cuts of the integrand and the two integration
E .( - e '
contours. When u - p = integer, one of the cuts vanishes allowing

the contour for P to be simplified,

P
J o I(=j+m) 1 J=mg . Vo o Vy-<kAm
PY '(ch v) = o5y o731 ds s¥ (s ch2+sh 2)

s |=1

t
X (ch }2)- + gesh -\é)-)-‘]—l-m (H.56)
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Equation (H.54) may be verified by making the substitution

s = -(th 321) t, then using a version of B 2.12 (3),

(0%)
- f at(-4 )P 160" 12)® = SR ) s F(a,ps05a).
1

Equation (H.55) is proved with the substitution s = +(cth -}) t
and subsequent application of B 2.12 (5).

In this section we are using 2z = ch v only for convenience;
there is no implication that 2z > 1. In fact, all the integral repre-
sentations given here are valid forlcomplex z off the cuts shown in

2
Fig. 6. For example, sh -\21 = (-2—2-}-) , cut according to Section 5.

With the replacement s = & = eﬂw and use of the identities
(e%h ¥ + sh X)(ch2+e°‘sh Yy = e*ch v+ shvech a),
2 27 2 2
a., Vv Vv .V o, Vy=1 _ ch v+ shwvechauo _
(e ch§+sh-é-) (eh§+esh-é-) = [sh\)‘+ Sh Vv oh o= shoa}: I,

formulas (H.56) and (H.55) may be recast as
T
]
J - I(-j+m) .1, ~imy -j=1+m
P (ch v) om)  ow dw e (ch v+sh v cos w)
-

!
. . . -m
x (sh v+ch v cosw-isin w) ,

(H.57)
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©
ey '
J oy - D(j+1-p ) .1 -Ho, - -j=1+u
Q.“u'(Ch \)) = W Pl do e ° (Ch v+sh v ch Ol.)
-0

1
x (sh v+ch v ch o-sh a)™™ .

(H.58)

Endless variations of (H.57) and (H.58) arise from the

symmetry relations given in Section 9 (e.g., PY = P_J—l), from
taking o + -0, w > -w , and from further versions of the expression

I defined above,

T = sh v+ch v ch o+ sh o
ch vtsh v ch o

'—.\

sh vich v ¢h a+sh o | 2
sh v+ch v ch a-sh o

+ v +1
F'—cx‘ —
ez ]
0, V
L]l + e 'bhz
For example,
[oo]

t
J S O 5 0 VD R -ua -j-1
Quu'(ch V) T T { 5 do. e " (ch v+sh v ch a)

-O0
- - '
(ea + th Y_ ) H
- }
X .
1 + %th %

This version appears in C.DM.27 as (A.8) in their calculation of the

- (V_l).

. . . J
+ + Cq—class UIR matrix element,which they call du+’u +
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Chapters 3 and 6 of V':’Llenkin’svbook9

provide an imposing
quantity of information on the functions Pim‘(z), including further
integral representations. The connection to Vilenkin's function

q3ém'(z) is found by comparing (H.56) with Vilenkin VI 3.3 (1):

Bl - R e o

The integral representations (H.57) and (H.58), which are
central to Part 3 of our addition theorem proof of Section V, are

given a group-theoretic interpretation in Section V.5.



10.

11.-

12.

13.

=122~

FOOTNOTES AND REFERENCES
This report was done with support from the United States
Energy Research and Development Administration.
Ya. I. Azimov, Sov. J. Nucl. Phys. 4, 469 (1967).
V. Bargmann, Ann. Math. 48, 568 (1947).
N. Mukunda, J. Math. Phys. 8, 2210 (1967).
M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964). [AG]
Several authors have chosen to adhere more closely to the
notation of AG, notably RuhlBO, Section 6-4: and Strathdee
et. al., IAEA/ICTP Report IC/67/9, Trieste, 1967 (unpublished),
p. 59.
G. F. Chew and A. Pignotti, Multiperipheral Bootstrap Model,

Phys. Rev. 176, 2112 (1968).

See G. Veneziano, CERN Preprint TH.2200 and references therein.

G. F. Chew and C. Rosenzweig, Phys. Rev. D12, 3907 (1975).

N. Ya. Vilenkin, Special Functions and the Theory of Group

Representations, AMS Translations of Mathematical Monographs

(Amer. Math. Soc., Providence, R.I., 1968), vol. 22.
Bateman Manuscript Project, A. Erdelyi et. al., (McGraw-Hill,

New York, 1953), Higher Transcendental Functions, Vol. 1. [B]

F. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics

(Cambridge, University Press, 1931).

.I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,

and Products (Academic Press, New York,1965). BHﬂ

W. Magnus and F. Oberhettinger, Formilas and Theorems for the

Functions of Mathematical Physics (Chelsea, New York, 1949). [MD]




14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

2.

=123~

V. de Alfaro, T. Regge and C. Rossetti, Nuovo Cimento 26, 1029
(1962). [ARR]

Robert Hermann, Fourier Analysis on Groups and Partial Wave

Analysis (Benjamin, New York, 1969).

J. Gunson, J. Math. Phys. 6, 852 (1965).
This pinch is the source of Regge cuts in the diagonalized mul-
tiperipheral equation (see Eq. (6.13)), unless the "kinematic"

poles in Fig. 3 are somehow cancelled in the projection (6.14).
The classical Laplace operator V2 = Bi'++8§ + 82

invariant operator of the Euclidean group E(3).

is an

The addition theorem (2.7) is clearly true as zy > 1 since

lim Qﬁk (zl) = m8(ip - i)). However, this does not prove

ZI+1

(2.7) because the coefficient is not determined by this limit.
1
It should be emphasized that the parameters g, = (¢2,m2,¢2)

are dependent variables given by g, = gl_lg as in Appendix E.

L. Sertorio and M. Toller, Nuovo Cimento 33, 413 (1964).

M. Toller, Nuovo Cimento 37, 631 (1965).
To visualize the diagonalization it is helpful to extend the
definitions of A, B, and C +to the entire group manifold via

Ag) = 0(g)A(g)  where 6(g) = (1 ges’

+
0 g¢ S,
In the SO(3) analog of going from (6.10) to (6.15), one would
1 1
1’¢l) -+ B( -,61,—) and then f2ﬂ d¢l/2ﬂ =1. In
0

particle physics applications of these equations, usually the

take B(¢l,6

. 1
product B(gi) C(gg) depends only on the sum w = ¢; + ¢,

. 1
(the Toller angle) or its continuation a = El + gz,.in which



25.

26.

27.

28.

29..

30.

31.

32.

33.

-124-

case ¢i _or Ei may be regarded as a redundant variable and
the "Toller" dependence taken into the object C(gz). See,
e.g., Fig. 4;

H.D.I. Abarbanel and L. M. Saunders, Phys. Rev. D25 711 (1970).
[as]

C. Cronstrdém, Partial Diagonalization of Bethe-Salpeter Type
Eéuations, Amn. Phys. (N.Y.) 92, 262 (1975). Cronstrdm's
group-theoretic analysis is based on formulas like our Egs.
(2.25) and (2.28).

M. Ciafaloni, C. DeTar, and M. Misheloff, Phys. Rev. 188,
2522 (1969). [cou]

N. F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. 163, 1572
(1967).

A. H. Mueller and I. J. Muzinich, Ann. Phys. (N.Y.) 57,

500 (1970).

W. Ruhl, The Lorentz Group and Harmonic Analysis (Benjamin,

New York, 1970).

For good summaries see: A. 0. Barut and C. Fronsdal, Proc.
Roy. Soc. A287, 532 (1965); W. J. Holman and L. C. Biedenharn,
Jr., Ann Phys. (N.Y.) 39, 1 (1966); Chapter 17 of Brian G.

Wynbourne, Classical Groups for Physicists (Wiley, New York,

1974).

J. G. Kuriyan, N. Mukunda and E. C. G. Sudarshan, J. Math.

Phys. 9, 2100 (1968).

Bargmann used -izwgg -i2eKy e-lva3 .



34.

35.

36.

37.

38.
39.
40.

-125-

3 is that the

Mukunda's concrete interpretation of this fact
change of variable which takes one from Bargmann's "circle" mul-

tiplier representation, where J, = i 3/9¢, to a space where

3
Kl =1 8/3q, maps Bargmann's circle into two real lines in the
complex g-plane. On the other hand, the Dk+ representation is

associated with functions analytic inside Bargmann's circle,
hence analytic in the strip between the two lines in the g-
plane, so for Dk+ the two lines are not "independent" and there

is no need for a multiplicity index.

Bargmann uses Gi = Mi or Lr’ §i==—xr, and p; =&y,

1 See, e.g.,

Bargmann's equations (1.26), (1.37), (4.7), (4.17) to (4.20),
also (10.5). For an understanding of Bargmann's "preliminary
remarks", e.g., equations (1.1) to (1.4), see L. O'Raifeartaigh,
Matscience Report 25 (Inst. of Math. Sciences, Madras, 1964).

In Appendix F we show that the Ei generate the left-regular
representation.

The point is that if Gi > Gi' is an automorphism of the Lie
algebra, the Campbell-Hausdorff identities (A.2) will be the
same in Gi' as they are in Gi’ since they are derived directly
from the Lie algebra. Because our derivation of the differential
generators 61 uses only the C-H identites, the new operators
ai' will be given by the same expressions as the 6i'

J. Pasupathy and B. Radhakrishnan, Ann. Phys. (N.Y.) 83, 186
(1974). [PR)

N. Mukunda and B. Radhakrishnan, J. Math. Phys. 14, 254 (1973).
G. Lindblad and B. Nagel, Amn. Inst. Henri Poincare 13, 27 (1970).

E. G. Kalnins, J. Math. Phys. 14, 654 (1973).



41.

42.
43.

bty

45.

46.

47.

48.

49.

50.

-126-

Since We have used 50(3,1) instead of SIL(2,C) to find the
parameter relations, the angle '¢' is only determined modulo
2n (see (B.8), (E.2), and (E.4))..

N. Mukunda, J. Math. Phys. 14, 2004 (1973).

For a mixed-basis expansion theorem, see Appendix D of Ref.
29.

See B. Friedman, Principles and Techniques of Applied Mathe-

matics (Wiley, New York, 1956), p. 214; or Chapter 4 of Ivar

Stakgold, Boundary Value Problems of Mathematical Physics

(MacMillan, London, 1967), vol. I.

For other statements of this theorem see §13 of Ref. 2, Eg.
(14.5) of Ref. 4, or Section VI.5.3 of Ref. 9.

dg o II dpi/|det XI with X defined in (C.5) and implicitly given
in (C.9), (C.11), (C.15) and (C.16).

See Eq. (2.22) of C. E. Jones, F. E. Low, and J. E. Young,

Ann. Phys. (N.Y.) 63, 476 (1971). See also Egs. (5.19) and
(5.20) -- and nearby comments -- of C. Cronstrom and W. H. Klink,
Amn. Phys. (N.Y.) 69, 218 (1972).

When the 2z arguments of all Legendre functions appearing in

a formula are the same, we omit them.

G. N. Watson, Trans. Cambridge Philos. Soc. 22, 277 (1918).
Watson's results are more fully reported in Section 7.2 of

Y. L. Luke, The Specidl Functions and their Approximations

(Academic Press, New York, 1969), Vol. I.

See E. C. Titchmarsh, The Theory of Functions, 2nd Ed. (Oxford

University Press, London, 1939), p. 186. A more general result



51.

52.

-127-

is given as Theorem 11.3.3 of Einar Hille, Analytic Function

' Theory (Ginn, Boston, 1962),Vol. II, p. 64.

More generally, as follows from (H.24) when u - v = 1,2,3...,
Pﬁv has two finite chains of zeros; Vv < j< u-1 and
-u<jg-v-1. Forany u and v, Q{“) has two semi-infinite
chains of poles, j< -u -1 and j<v-1.

This fact is of course no coincidence; see B 2.1 (12) and

nearby discussion. The contour notation is explained in B 1.6.
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FIGURE CAPTIONS

Fig. 1 The helicity lattice for dim' and the summation segments
for Egs. (4.1) and (4.2).

Fig. 2 Cross hatch shows convergence domain of (4.2) in Zy for
a typical value of Z with Re(zz) > 0.

Fig. 3 Integration contour for (4.16), (4.14) or (2.7), when
Re(Jj) < -1.

Fig. 4 Kinematic structure of a typical multiperipheral equation.

Fig. 5 Principal sheet for (z - 1)* . With |arg(z-1)| < T,

(1-2z) = (=z-1) e:-i1T , Im(z) 2 0.

Fig. 6 Cuts of Legendre functions. All cuts, deformed for clarity,
are taken to lie on the real axis. 5 and é have the
same cuts as P and @ except that one cut has been
swung around from left to right. F indicates the hyper-
geometric cut in each case.

Fig. 7 (a) Principal sheet of £&(z) = ch_l(z) = fn [é A 1]
showing square-root and legarithmic cuts.

(b) Region of &-plane corresponding to the z-sheet shown
in (a). Level curves are drawn to indicate the nature
of the mapping; ellipses are not drawn to scalef

Fig. 8 Helicity lattice diagrams.

Fig. 9 Squiggles show cut choice for integrand of (H.54) and

(H.55). Solid lines are integration contours.
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